Моделирование показало, что наиболее вероятным источником тяжелых элементов во Вселенной являются столкновения нейтронных звезд друг с другом. Основной альтернативой этому механизму считается столкновение нейтронных звезд с черными дырами. Исследование опубликовано в The Astrophysical Journal Letters.
Механизмы образования химические элементов, из которых сейчас состоит Вселенная, существенно различаются. Ядра водорода и гелия сформировались в первые минуты после Большого взрыва. Литий, бериллий и бор возникли в результате бомбардировки межзвездной среды высокоэнергетичными космическими лучами. Элементы от углерода до никеля являются продуктами реакций синтеза в ядрах звезд. Элементы с массовым числом больше 94 получены людьми, еще часть элементов нестабильна и в природе почти не встречается. Долгое время основным источником остальных элементов считались взрывы сверхновых, однако моделирование этих явлений показало, что частота этих взрывов слишком мала, чтобы они могли быть источником всех тяжелых элементов природного происхождения, а потому физики предположили, что большая часть таких элементов может рождаться при столкновении нейтронных звезд. Позднее, однако, астрофизики выдвинули предположение, что еще больше тяжелых элементов может образовываться при столкновениях нейтронных звезд с черными дырами. В 10-х годах был проведен ряд численных расчетов столкновений черных дыр и нейтронных звезд в узком диапазоне масс, который подтвердил, что они могут дать вклад в производство тяжелых элементов, который сопоставим с вкладом столкновений двух нейтронных звезд.
Чтобы проверить, какой источник тяжелых элементов является главным, группа американских физиков под руководством Чэня Синьюя (Hsin-Yu Chen) из Массачусетского технологического института провела компьютерное моделирование процессов, происходящих в обоих вариантах столкновений при реалистичном распределении черных дыр и нейтронных звезд по массам и моментам импульса.
Ученые провели моделирование 600 тысяч столкновений нейтронных звезд друг с другом и с черными дырами для различных значений масс сталкивающихся объектов, а также величин и направлений их угловых моментов. Кроме того, физики использовали несколько разных вариантов уравнения состояния вещества нейтронной звезды. Вывести это уравнение из первых принципов квантовой хромодинамики в настоящее время невозможно из-за трудностей с количественным описанием сильно-взаимодействующих систем, так что ученые вынуждены делать предположения относительно его формы, совместимые с астрономическими наблюдениями за нейтронными звездами.
Проанализировав результаты моделирования, исследователи пришли к выводу, что наиболее вероятная доля тяжелых элементов, родившихся при столкновениях нейтронных звезд друг с другом, составляет около 70 процентов. Однако, в этих результатах есть значительная неопределенность. Количество элементов, родившихся при столкновении, существенно зависит как от используемого уравнения состояния вещества нейтронной звезды, так и от числа нейтронных звезд и черных дыр с определенными значениями массы и момента импульса во Вселенной, а это число в настоящее время точно неизвестно. Физики расчитывают, что в ближайшем будущем гравитационно-астрономические наблюдения позволят лучше определить распределение нейтронных звезд и черных дыр по массе и моменту импульса и, соответственно, уточнить выводы их работы.
От редактора
В первой версии статьи было сказано, что технеций был получен людьми, что не соответствует действительности. Сейчас известно, что линии его поглощения встречаются в спектрах некоторых звезд.
Ранее мы подробно объясняли механизмы образования тяжелых элементов при столкновениях нейтронных звезд в блоге «Откуда берутся тяжелые металлы».
Андрей Фельдман
Также ученые нашли кандидатов в крупные экзопланеты у еще 12 звезд-гигантов
Астрономы открыли вторую по счету массивную экзопланету у желтого гиганта 75 Кита, которая почти в два раза массивнее Солнца. Исследователи также обнаружили свидетельства наличия кандидатов в дополнительные крупные экзопланеты у еще 12 звезд-гигантов. Препринт работы опубликован на сайте arXiv.org. К настоящему времени подтверждено открытие более пяти тысяч экзопланет, большинство из них находятся на орбитах вокруг звезд, масса которых меньше или сопоставима с Солнцем. Искать планеты у звезд массивнее полутора масс Солнца, сложнее из-за больших размеров, температур и скорости вращения звезд, хотя это важно для проверки моделей их формирования и эволюции. Субгиганты или гиганты спектральных типов G или K более удобны для поисков экзопланет из-за более низких температур и медленного вращения. Группа астрономов во главе с Хуань Юй Тэном (Huan-Yu Teng) из Токийского технологического института опубликовала результаты повторных наблюдений за 32 планетными системами вокруг звезд-гигантов в рамках программы OPSP (Okayama Planet Search Program), проведенных при помощи метода радиальных скоростей на 1,88-метровом телескопе Астрофизической обсерваторией Окаямы. У звезд HD 5608, Каппы Северной Короны, HD 167042, HD 208897 и 18 Дельфина были обнаружены свидетельства наличия дополнительных массивных компаньонов на широких орбитах. В случае звезд Эпсилон Тельца, 11 Волосы Вероники, 24 Волопаса, 41 Рыси, 14 Андромеды, HD 32518 и Омега Змеи наблюдаемая динамика лучевой скорости звезды может быть связана как с наличием дополнительных кандидатов в экзопланеты, так и со звездной активностью или другими причинами. Исследователи также сообщили об открытии нового экзогиганта 75 Cet c у желтого гиганта 75 Кита. Эта звезда относится к спектральному классу G3 III, обладает массой 1,92 массы Солнца и находится в 268 световых годах от Солнца. В 2012 году у звезды был обнаружен долгопериодический экзогигант 75 Cet b. 75 Cet c обладает орбитальным периодом 2051,62 дней, минимальной массой 0,912 массы Юпитера и длиной большой полуоси орбиты в 3,92 астрономических единиц. Ученые также уточнили параметры экзогиганта 75 Cet b — текущее значение его минимальной массы составляет 2,48 массы Юпитера, а длина большой полуоси орбиты — 1,912 астрономической единицы. Ранее мы рассказывали о том, как ученые впервые нашли объект планетарного масштаба у белого карлика.