Физики из Австралии и Китая обнаружили, что под действием внешнего электрического поля капля жидкого галлия может совершать периодические пульсации с четко заданной частотой. Этот процесс происходит за счет обратимого электрохимического окисления поверхности металла в поле силы тяжести. Такие пульсации могут быть использованы при разработке искусственных жидкостных насосов в мягких роботах или микрофлюидных системах, пишут ученые в Physical Review Letters.
Известно, что капли жидких металлов можно заставить пульсировать, используя поверхностные электрохимические реакции, которые приводят к изменением их физических свойств. Например, если к капле ртути или галлия, находящейся в растворе окислителя, поднести железный гвоздь, то можно таким образом запустить колебательный электрохимический процесс, в течение которого сначала окисляется ртуть, что приводит к снижению ее поверхностного натяжения и растеканию капли по дну, а затем — окислению железа и обратному восстановлению ртути до металлического состояния, в результате чего капля вновь собирается в шарик. Эти процессы сменяют друг друга до тех пор, пока в растворе не кончится весь окислитель. Тем не менее, несмотря на то, что это явление было обнаружено довольно давно, из-за неупорядоченного характера этих пульсаций найти для них практическое применение не удавалось.
Группа физиков из Австралии и Китая под руководством Чжэньвэя Ю (Zhenwei Yu) из Университета Вуллонгонг нашла способ сделать подобные колебания периодическими и при этом управлять частотой пульсаций. Для этого ученые предложили использовать совместное действие силы тяжести и внешнего электростатического поля. В предложенной схеме эксперимента капля жидкого галлия наносилась на наклонную поверхность внутрь графитового электрода с круговым отверстием посередине. После этого вся система помещалась в раствор щелочи, который выполнял роль электролита.
Под действием силы тяжести капля галлия на наклонной поверхности скатывается в сторону одной из стенок электрода. Включение постоянного тока в этой системе приводит к запуску электрохимического окисления галлия, в результате которого на поверхности капли образуется тонкая пленка из оксида галлия Ga2O3, а ее поверхностное натяжение падает с 500 миллиджоулей на квадратный метр практически до нуля. Из-за падения поверхностного натяжения капля меняет сферическую форму на плоскую, при этом из-за неравномерного распределения скорости реакции происходит смещение центра тяжести капли. Из-за полученного при этом импульса и электростатического отталкивания капля перемещается в центр отверстия, контакт с электродом теряется, и оксид галлия восстанавливается обратно до металлического состояния, а капля вновь приобретает сферическую форму. Таким образом система оказывается в начальном состоянии, и цикл таким образом замыкается: капля галлия под действием силы тяжести опять начинается скатываться к электроду.
Авторы отмечают, что для возбуждения пульсаций используется источник постоянного тока, а не переменного, как в некоторых аналогичных работах. Меняя напряжение на электродах можно изменять частоту биения капель объемом от 50 до 150 микролитров в довольно широком диапазоне: от 0 до 610 ударов в минуту. Максимальная скорость движения капель галлия составляет около сантиметра в секунду. Исследователи также отмечают, что обратимая реакция окисления, которая запускает периодические пульсации, происходит в щелочном растворе при температуре немного выше комнатной (около 34 градуса Цельсия). Тем не менее, если сделать раствор электролита кислым, то пульсации все равно можно наблюдать, но они становятся неустойчивыми и теряют периодический характер.
По словам ученых, этот процесс можно использовать при разработке методов жидкостных элементов управления для электронных устройств, при создании композитных материалов, растягиваемых электронных устройств. Кроме того, подобные пульсирующие капли могут работать в качестве насосов в мягких роботах или микрофлюидных устройствах.
Жидкий галлий и сплавы на его основе нередко предлагают применять для создания устройств, форма которых должна меняться с течением времени. Так, из сплава галлия и индия ученые создали электрическую цепь с изменяемой схемой, управление которой тоже происходит за счет изменения напряжения между электродами. Китайские химики сделали на основе жидкого галлия, помещенного внутрь силиконовых микроканалов гибкие и сильно растяжимые электронные устройства. А другая группа исследователей предложила использовать галлий вблизи точки плавления в качестве клея для широкого спектра применений — от робототехники до перемещения биологических образцов.
Александр Дубов
Устройство необходимо для разгона электронов в линейном ускорителе
Ученые из Института ядерной физики имени Будкера СО РАН создали ключевой элемент будущего источника синхротронного излучения СКИФ — клистрон, устройство, которое будет обеспечивать линейный ускоритель СКИФа током высокой мощности и сверхвысокой частоты, сообщили пресс-службы института и Минобрнауки РФ. Разработка стала вынужденным шагом: ученые планировали закупить клистроны в Японии, но из-за санкций фирма-подрядчик разорвала контракт. Проект «Сибирского кольцевого источника фотонов» (СКИФ) был утвержден в октябре 2019 года. Предполагается, что он будет генерировать синхротронное излучение с энергией фотонов от 1 до 100 килоэлектронвольт, которое будет использоваться для высокоточного рентгеноструктурного анализа, то изучения характера рассеяния излучения в толще образца. Такого рода «просвечивание» необходимо для многих задач в физике твердого тела, для разработки новых материалов, биомедицинских исследований. Подробнее об этом мы писали в материале «Больше синхротронов». Первый элемент СКИФа — линейный ускоритель (линак), который должен будет выдавать поток электронов с энергиями в 200 мегаэлектронвольт. Частицы разгоняются в нем благодаря переменным электрическим полям высокой частоты в СВЧ-резонаторах. В свою очередь, для питания СВЧ-резонаторов нужен электрический ток сверхвысокой частоты. Устройство, которое для этого предназначено, называется клистроном. В апреле 2023 года физики ИЯФа проверили в действии «первую ступень» линака, разогнав в нем электроны до энергии 30 мегаэлектронвольт. Однако, как пояснил N + 1 завлабораторией ИЯФ Алексей Левичев, в этом эксперименте использовался клистрон японской фирмы Canon, который институт успел получить до введения санкций. По его словам, для полноценной работы линака требуется четыре клистрона — три работающих и один резервный. Поскольку клистроны с нужными параметрами выпускают только в США, Франции и Японии, физикам пришлось создавать устройство самостоятельно. Клистрон представляет собой разновидность электронной лампы. В нем есть катод, где формируется поток электронов. Затем этот поток ускоряется и попадает во входной резонатор, где под действием электрического поля он становится дискретным — разбивается на сгустки, которые, в свою очередь, наводят ток сверхвысокой частоты в выходном резонаторе. Затем электроны «ловит» коллектор и цикл повторяется. Таким образом из непрерывного тока получают ток с частотой колебаний около 3 гигагерц. При испытаниях клистрона, созданного в ИЯФе была получена мощность в 50 мегаватт. По словам, директора ИЯФ Павла Логачева, создать собственный клистрон устройство они смогли благодаря благодаря тому, что Национальная ускорительная лаборатория SLAC подарила институту клистрон, и физики научились с ним работать. По его мнению, эта технология в дальнейшем будет востребована для других ускорительных установок в России — для синхротрона, источника комптоновского излучения в Сарове, источника нейтронов в Дубне. По словам Левичева, проект линейного ускорителя разрабатывался под параметры японского клистрона, поэтому собственная их установка в максимально возможной степени соответствует «исходнику». Однако соответствие все же не стопроцентное, поэтому, вероятнее всего, три сибирских клистрона будут основными, а японскому останется роль резервного. Испытания линака со всеми тремя клистронами и на проектной энергии в 200 мегаэлектронвольт сейчас планируются на лето 2024 года, добавил Левичев. Раньше мы рассказывали, как японским ученым удалось увидеть с помощью синхротрона двухщелевую самоинтерференцию одиночных электронов во времени.