Устройство необходимо для разгона электронов в линейном ускорителе
Ученые из Института ядерной физики имени Будкера СО РАН создали ключевой элемент будущего источника синхротронного излучения СКИФ — клистрон, устройство, которое будет обеспечивать линейный ускоритель СКИФа током высокой мощности и сверхвысокой частоты, сообщили пресс-службы института и Минобрнауки РФ. Разработка стала вынужденным шагом: ученые планировали закупить клистроны в Японии, но из-за санкций фирма-подрядчик разорвала контракт.
Проект «Сибирского кольцевого источника фотонов» (СКИФ) был утвержден в октябре 2019 года. Предполагается, что он будет генерировать синхротронное излучение с энергией фотонов от 1 до 100 килоэлектронвольт, которое будет использоваться для высокоточного рентгеноструктурного анализа, то изучения характера рассеяния излучения в толще образца. Такого рода «просвечивание» необходимо для многих задач в физике твердого тела, для разработки новых материалов, биомедицинских исследований. Подробнее об этом мы писали в материале «Больше синхротронов».
Первый элемент СКИФа — линейный ускоритель (линак), который должен будет выдавать поток электронов с энергиями в 200 мегаэлектронвольт. Частицы разгоняются в нем благодаря переменным электрическим полям высокой частоты в СВЧ-резонаторах. В свою очередь, для питания СВЧ-резонаторов нужен электрический ток сверхвысокой частоты. Устройство, которое для этого предназначено, называется клистроном.
В апреле 2023 года физики ИЯФа проверили в действии «первую ступень» линака, разогнав в нем электроны до энергии 30 мегаэлектронвольт. Однако, как пояснил N + 1 завлабораторией ИЯФ Алексей Левичев, в этом эксперименте использовался клистрон японской фирмы Canon, который институт успел получить до введения санкций.
По его словам, для полноценной работы линака требуется четыре клистрона — три работающих и один резервный. Поскольку клистроны с нужными параметрами выпускают только в США, Франции и Японии, физикам пришлось создавать устройство самостоятельно.
Клистрон представляет собой разновидность электронной лампы. В нем есть катод, где формируется поток электронов. Затем этот поток ускоряется и попадает во входной резонатор, где под действием электрического поля он становится дискретным — разбивается на сгустки, которые, в свою очередь, наводят ток сверхвысокой частоты в выходном резонаторе. Затем электроны «ловит» коллектор и цикл повторяется. Таким образом из непрерывного тока получают ток с частотой колебаний около 3 гигагерц.
При испытаниях клистрона, созданного в ИЯФе была получена мощность в 50 мегаватт. По словам, директора ИЯФ Павла Логачева, создать собственный клистрон устройство они смогли благодаря благодаря тому, что Национальная ускорительная лаборатория SLAC подарила институту клистрон, и физики научились с ним работать.
По его мнению, эта технология в дальнейшем будет востребована для других ускорительных установок в России — для синхротрона, источника комптоновского излучения в Сарове, источника нейтронов в Дубне.
По словам Левичева, проект линейного ускорителя разрабатывался под параметры японского клистрона, поэтому собственная их установка в максимально возможной степени соответствует «исходнику». Однако соответствие все же не стопроцентное, поэтому, вероятнее всего, три сибирских клистрона будут основными, а японскому останется роль резервного.
Испытания линака со всеми тремя клистронами и на проектной энергии в 200 мегаэлектронвольт сейчас планируются на лето 2024 года, добавил Левичев.
Раньше мы рассказывали, как японским ученым удалось увидеть с помощью синхротрона двухщелевую самоинтерференцию одиночных электронов во времени.
И выяснили, что опытные спортсмены неосознанно следуют этой модели
Группа физиков разработала стратегию оптимальной раскачки скейтера на рампе и проверила ее на добровольцах. Оказалось, что движение спортсмена со стажем мало отличается от разработанной модели по сравнению со стилем катания новичка. Своими результатами исследователи поделились в Physical Review Research.