Чтобы потом передать друг другу абсолютно зашифрованные изображения
Российские ученые установили канал с квантовой защитой между РФ и КНР с помощью спутника. Они полностью собрали, настроили и запустили наземную станцию в Звенигороде, построили модель установки и обменялись изображениями с китайской станцией. Результаты работы опубликованы в журнале Optics Express.
Эта новость появилась на N + 1 при поддержке ежегодной Национальной премии в области будущих технологий «Вызов». В 2023 году ее присудили за ионный квантовый процессор, магниты из высокотемпературного сверхпроводника, вычислительные устройства на основе поляритонов и оптический транзистор, а также открытия, позволившие создать новые подходы для лечения заболеваний мозга
Квантовая коммуникация стала одной из первых квантовых технологий, которая нашла коммерческое применение, и стала популярна для безопасной передачи зашифрованной информации. Например, в России еще в 2017 году запустили первую линию квантовой связи между двумя банками.
Несмотря на разработки разных протоколов передачи сигнала и его устойчивости к атакам, проблема затухания при передаче излучения на большие расстояния остается актуальной. Решить ее можно дополнением и усложнением волоконной системы, или переходом от волоконных линий передачи к открытому пространству, то есть к использованию спутниковой связи. Такие эксперименты уже проводились, причем не только для того, чтобы проверить работоспособность и эффективность метода, но и с целью перенести наработки из оптоволоконных технологий.
Команде ученых из Университета МИСиС, Российского квантового центра и компании «КуСпэйс Технологии» удалось передать информацию по защищенному квантовому каналу между Россией и Китаем на расстояние 3,8 тысячи километров. В этой же системе физики научились обрабатывать сигнал с учетом неидеальности детекторов для повышения точности передачи.
В работе физики задействовали спутник «Мо-цзы» и смогли отправить зашифрованное изображение 256×64 пикселя из наземной станции в Звенигороде в Наньшань и принять зашифрованное изображение из Наньшаня.
Перед тем, как проводить эксперимент, ученые построили его модель и попробовали предсказать как, например, от положения спутника будет зависеть скорость передачи или уровень ошибок.
Авторы полностью собрали и настроили наземную станцию в Звенигороде для приема и передачи сигнала. Станцию оснастили системой сбора, наведения и отслеживания, которая задействовала два телескопа: грубое управление станцией осуществляла моторизованная установка основного телескопа, которая использовала расчетное положение спутника на орбите, а вспомогательный 70-миллиметровый телескоп с камерой был наведен на спутник. Алгоритм камеры определял центр изображения спутника и регулировали ориентацию телескопа. Разные длины волн света восходящего и нисходящего пучков позволили выполнять спектральную фильтрацию, благодаря чему удалось получить высококонтрастное изображение.
Дополнительно звенигородскую станцию оснастили системой анализа и обработки оптических сигналов для регулировки отклонения луча, вращения системы отсчета поляризации и спектральной фильтрации фотонов. Это позволило корректировать отклонения пучка с квантовыми сигналами с точностью менее 10 микрорадиан.
Все настройки и дополнительные методы анализа позволили передать секретный ключ длиной 310 килобит, рассчитанный авторским методом, который они предложили в работе. Полученная величина длины ключа, низкие потери и другие преимущества схемы позволят повысить скорость передачи данных с помощью систем квантового распределения ключей на большие расстояния
Пока спутниковая связь с квантовой защитой недоступна для глобального коммерческого использования и оптоволоконные линии активно применяются для квантового распределения ключей: например, разрабатывают новые повторители сигнала и передают квантовый сигнал вместе с классическим по одному волокну, упрощая интеграцию квантовых систем.
Такое же состояние вещества достигается внутри планет-гигантов или белых карликов
Немецкие физики сжали тонкую проволоку до экстремальных давлений порядка 800 мегаатмосфер при помощи короткоимпульсного лазера джоулевского класса. Эта работа поможет исследовать состояния вещества во внутренних слоях планет-гигантов или белых карликов. Статья об этом исследовании опубликована в журнале Nature Communications.