Американские физики теоретически исследовали вопрос совместного распространения пучка атомов и пучка мощного лазерного излучения. Они показали, что в такой системе можно добиться взаимной коллимации пучков вплоть до нескольких десятков тысяч километров. Работа ученых может в будущем помочь фокусировать лазерный луч на световой парус, летящий далеко от Земли. Исследование опубликовано в Scientific Reports.
Большая часть экспериментальной физики опирается на работу с пучками частиц или света. Таким способом можно передавать материю или энергию на некоторые расстояния в сильно локализованном виде. Ограничительным фактором при этом выступает естественная расфокусировка лучей. Если в случае частиц это происходит из-за диффузии в системе центра масс, то свет расходится из-за неизбежной дифракции. Последнее, к примеру, оказывается преградой к работе космического солнечного паруса, разгоняемого лазером.
Физики активно ищут способы борьбы с расфокусировкой. Для удержания частиц перспективным выглядит использование света. Ученые уже научились применять оптические силы для удержания небольших частиц в лазерных пинцетах и ловушках. С другой стороны, свет тоже можно удерживать сколлимированным за счет нелинейного эффекта самофокусировки, когда показатель преломления среды, в которой он распространяется, различен в разных точках лучевого профиля. Из этого вытекает естественная идея о том, что при правильном подборе параметров пучки света и частиц могут защищать друг друга от расхождения. Признаки того, что это возможно, были обнаружены физиками для изначально сходящихся пучков, однако обоюдную самофокусировку изначально расходящихся частиц и света пока никто не исследовал.
Андрес Кастильо (Andres Castillo) из Стэнфордского университета со своими американскими коллегами провели осесимметричное моделирование совместного распространения частиц и света, чтобы изучить эффективность этого подхода. Они выбирали параметры симуляции таким образом, чтобы продемонстрировать его применимость для технологии лазерного разгона солнечного паруса. В результате им удалось найти оптимальную конфигурацию, в которой свет и частицы удерживаются существенно лучше, чем в случае естественного распространения.
Для этого авторы использовали осесимметричное параксиальное уравнение Гельмгольца для электрического поля световой волны, полученное из уравнений Максвелла в пренебрежении поперечными компонентами распространения света, а также медленно меняющейся огибающей. Уравнение включает в себя показатель преломления, выраженный через диэлектрическую восприимчивость, которая для разреженной среды линейно связана с поляризуемостью частиц и их концентрацией.
Поляризуемость частиц, в свою очередь, зависит от частоты и интенсивности наведенного электромагнитного поля. В описанной системе это приводит к возникновению двух различных сил. Первая сила — дипольная — действует в сторону уменьшения оптического дипольного потенциала. В ситуации, когда интенсивность света максимальна в центре пучка и спадает к его краям, а частота чуть меньше, чем резонанс поглощения, она заставляет частицы всегда прижиматься к оси пучка. Вторая сила — рассеивающая. Она обусловлена поглощением фотона и его дальнейшим переизлучением в случайном направлении.
Стоит отметить, что записанные уравнения имеют универсальный характер и допускают масштабирование для различных расстояний и концентраций. Однако для авторов интерес представляло решение уравнений в контексте распространения мощного излучения на очень большие расстояния, необходимого для разгона солнечного паруса. Поэтому они рассматривали начальные условия, в которых диаметры светового пучка и пучка частиц были равны одному метру. В роли частиц физики выбрали изотопы 6Li, летящие со скоростью 0,1 скорости света и температурой 0,1 кельвин и обладающие линией поглощения на 671 нанометрах.
В результате численного решения уравнений, ученые нашли оптимальные условия, при которых сохранение фокусировки будет наиболее эффективным. Они включали в себя отстройку лазера равную -19 терагерц, мощность лазера равную 2,2 тераватт и концентрацию атомов равную 5,0×1013 обратных кубометров. При таких условиях пучки остаются хорошо сколлимированными вплоть до нескольких десятков тысяч километров. При этом волноводный режим для света оказывается одномодовым.
В описанной системе концентрация атомов достаточно мала. Однако физиков интересует распространение мощного лазерного света и в более плотных средах. Мы уже рассказывали про подобное исследование в воде.
Марат Хамадеев
Такое же состояние вещества достигается внутри планет-гигантов или белых карликов
Немецкие физики сжали тонкую проволоку до экстремальных давлений порядка 800 мегаатмосфер при помощи короткоимпульсного лазера джоулевского класса. Эта работа поможет исследовать состояния вещества во внутренних слоях планет-гигантов или белых карликов. Статья об этом исследовании опубликована в журнале Nature Communications.