Исследователи из Университета Джонса Хопкинса и Института передовой детской хирургии шейха Заида при помощи автономного робота-хирурга с минимальным вмешательством человека успешно провели процедуру наложения кишечного анастомоза свинье на лабораторном стенде и in vivo. Исследование опубликовано в Science.
Наложение кишечного анастомоза — операция по соединению сегментов кишки. Для того, чтобы робот под названием STAR (Smart Tissue Autonomous Robot) мог ориентироваться при проведении операции, в ткани были добавлены флюоресцирующие биомаркеры. В итоге робот самостоятельно провел операции ex vivo и in vivo, ориентируясь на собственное программное обеспечение и машинное зрение при помощи инфракрасных камер.
В отличие от обычной практики применения роботов-хирургов, где они выступают в качестве вспомогательного инструмента, STAR большую часть времени действовал самостоятельно под надзором врачей, которые иногда поправляли робота или помогали ему, например, придержать шовный материал. По оценкам исследователей, робот действовал целиком самостоятельно около 60 процентов всего времени проведения операции.
Также авторы исследования сравнили качество наложенного анастомоза с работой живых хирургов и других моделей роботов — к соединенному кишечнику подключали насос и замеряли давление, при котором шов давал протечку. Оказалось, что шов, наложенный STAR, превосходит по качеству швы других роботов-хирургов, а также вручную наложенные швы.
По словам авторов исследования, цель разработки STAR вовсе не замена живых хирургов, а скорее демонстрация реальных возможностей автономной роботизированной хирургии. Исследователи отмечают, что с большим количеством датчиков или с дополнительным манипулятором совместная работа автономного робота-хирурга и живого врача может повысить качество операций и снизить влияние человеческого фактора на исход хирургического вмешательства.
Он пригодится на Марсе, Луне и ледяных спутниках планет-гигантов
Инженеры разработали концепцию робота для будущих миссий по изучению пещер на Марсе, Луне и ледяных спутниках планет-гигантов. Проект ReachBot описывает устройство с несколькими конечностями, которые способны раскладываться и дотягиваться до удаленных точек, на которых можно закрепиться с помощью захвата с металлическими шипами, сообщается в отчете NASA. При поддержке Angie — первого российского веб-сервера С тех пор как орбитальные исследовательские аппараты подтвердили существование пещер под поверхностью Марса и Луны, ученые не перестают размышлять над их полноценным исследованием. Помимо ценной информации об истории формирования небесного тела, в пещерах, куда не проникают ультрафиолетовые солнечные лучи и космические заряженные частицы, могли бы сохраниться и следы внеземной жизни. До последнего времени все подвижные роботы, предназначенные для изучения других планет, разрабатывались с расчетом, что они будут передвигаться только по сравнительно ровной поверхности. Поэтому они имеют относительно простое четырех- или шестиколесное шасси, которое устойчиво и не требует много энергии, но, к сожалению, не позволяет передвигаться по крутым каменистым склонам и скалам, и потому не подходит для исследования пещер. Инженеры под руководством Марко Павоне (Marco Pavone) из Стэндфордского университета уже несколько лет работают над многоэтапным проектом ReachBot для NASA, развивающим концепцию робота, способного перемещаться по пещерам и скалам со сложным рельефом, недоступным для других видов роботов при разных уровнях гравитации. Его главная особенность заключается в необычном способе передвижения. Вместо колес или ног у него есть несколько гибких удлиняющихся конечностей, на конце которых располагаются захваты с множеством мелких металлических шипов, которые цепляются за малейшие неровности на каменной поверхности. Аналогичный способ удержания на вертикальных поверхностях применялся в прототипе робота-скалолаза LEMUR, разработанном Лабораторией реактивного движения NASA. За счет металлических шипов робот может удерживать свое положение, распределив свой вес между несколькими конечностями, пока подыскивает следующую точку опоры для одной из них. Ожидается, что ReachBot сможет передвигаться не только по стенам и потолку, но и по полу как обычный ходячий робот. Однако на данной стадии проектирования конкретной конструкции для конечностей еще нет. Разработчики оценили параметры робота для миссии по исследованию марсианской лавовой трубки с высотой от пола до потолка порядка 30 метров. Это должно быть устройство массой около 10 килограмм, с восемью конечностями, способными развертываться до 20 метров в длину, оборудованное камерами и лидаром для навигации и прокладывания маршрута, а также для картографирования окружения. На предыдущих этапах были разработаны алгоритмы движения робота на плоскости, а также построен примитивный прототип ReachBot. В качестве четырех конечностей на нем используются стальные измерительные рулетки, оснащенные механизмом поворота, который позволяет «наводить» их на объект. После чего другой механизм раскручивает рулетку, на конце которой расположен захват с металлическими шипами. Робот умеет определять положение предметов вокруг с помощью визуальных меток, дотягиваться до них конечностями, ухватываться с помощью захватов и подтягивать себя в нужном направлении. В будущем разработчики планируют построить версию, которая способна двигаться в трехмерном пространстве. https://www.youtube.com/watch?v=Q6uvS_19OcA Существуют и другие концепции исследования инопланетных пещер, куда нет доступа колесных роботам. Одна из них предполагает использование нескольких четвероногих роботов Spot Mini. Каждый из членов группы будет отличаться от других, иметь свою роль и помогать другим.