Команда межпланетной миссии «Хаябуса-2» опубликовала новые результаты первого месяца работы на орбите вокруг астероида Рюгу. Оказалось, что на его поверхности больше скальных обнажений и меньше осыпей, чем ожидалось, а температура грунта колеблется от комнатной до сотни градусов Цельсия, сообщается в пресс-релизах (1,2,3) на сайте миссии.
Автоматическая межпланетная станция «Хаябуса-2» была запущена в космос в декабре 2014 года. Ее цель — доставка образцов грунта с астероида 162173 Ryugu, который принадлежит к астероидам класса С. Аппарат успешно прибыл к астероиду 27 июня и вышел на стабильную 20-километровую орбиту вокруг него. В ближайшие полтора года аппарат будет исследовать Рюгу с орбиты, спустит на его поверхность модуль MASCOT (Mobile Asteroid Surface Scout), на котором установлены спектрометр, магнитометр, радиометр и камера. Предполагается, что при подлете к Рюгу аппарат выстрелит по поверхности устройством SCI (Small Carry-on Impactor), состоящим из медного снаряда и заряда взрывчатки, тем самым исследователи получат возможность изучить состав верхнего слоя грунта астероида. После взятия пробы грунта с поверхности Рюгу станция отправится обратно к Земле и сбросит капсулу с веществом астероида в декабре 2020 года. Подробнее о миссии, ее задачах и инструментах можно прочитать в нашем материале «Собрать прошлое по крупицам».
Ранее станция уже провела картографирование поверхности астероида с 20-километровой орбиты, в результате чего ученые из команды миссии смогли построить две трехмерные модели вращения астероида. В конце июля аппарат сближался с поверхностью Рюгу до шести километров, а в начале августа снизился до минимальной высоты в 851 метр от поверхности Рюгу в рамках эксперимента по изучения гравитационного поля астероида и съемке его поверхности с близкого расстояния. Во время этих операций, а также в ходе предстоящей высадки на астероид модуля MASCOT, активно используется лидар для определения точного расстояния до поверхности Рюгу, итогами работы которого за первый месяц научной фазы миссии ученые оказались довольны. На основании данных с лидара удалось уточнить форму Рюгу, правда данных по полярным регионам астероида пока относительно мало.
Кроме того, команда миссии опубликовала температурную карту поверхности астероида по данным инфракрасной камеры TIR (Thermal Infrared Camera), полученным в течение шести часов 30 июня 2018 года, когда станция находилась на 20-километровой орбите вокруг Рюгу. Масштаб карты составляет 20 метров на пиксель, она демонстрирует разницу температур в северном и южном полушариях астероида, а также зависимость температуры поверхности от рельефа и смены сезонов на астероиде. Перепад температур грунта составляет от примерно комнатной (наиболее холодные места) до ста градусов Цельсия (наиболее нагретые участки поверхности).
Еще одним научным результатом стала оценка количества скальных обнажений, крупных валунов на поверхности Рюгу. Оказалось, что видимых выходов пород, таких, как валуны или крупные скалы, больше чем ожидалось, в этом Рюгу превосходит астероид (25143) Итокава, который изучала миссия «Хаябуса-1». Распределение и форма этих пород ,а также оценка их количества позволяют понять происхождение астероида и являются ценными доказательствами столкновения с другим крупным объектом в прошлом.
"Хаябуса-2″ — не единственная миссия с возвратом образцов грунта с астероида. В декабре этого года аппарат OSIRIS-REx должен достичь астероида Бенну и получить образец его грунта, который он доставит на Землю к 2023 году.
Александр Войтюк
Это молодые звезды, еще не вышедшие на главную последовательность
Астрономы нашли наблюдательные доказательства того, что одним из типов неопознанных космических источников высокоэнергетического гамма-излучения могут быть молодые звезды типа Т Тельца в областях звездообразований. Гамма-кванты рождаются во время очень мощных рентгеновских вспышек на таких звездах. Статья опубликована в журнале Monthly Notices of the Royal Astronomical Society. Молодые звездные объекты малой массы способны генерировать рентгеновское излучение, причем их активность в этом плане может быть больше, чем у звезд главной последовательности. В частности, звезды типа Т Тельца обычно демонстрируют быстропеременное жесткое рентгеновское излучение. Предполагается, что мощные рентгеновские мегавспышки, иногда возникающие на таких объектах из-за пересоединения магнитных силовых линий и нагревающие плазму, могут быть идеальными кандидатами в зоны ускорения частиц до релятивистских энергий и, как следствие, источниками гамма-излучения. Если эта идея, выдвинутая в 2011 году, верна, то можно объяснить природу ряда неопознанных источников гамма-излучения, найденных космическим телескопом «Ферми» в областях звездообразования Млечного Пути. Группа астрономов во главе с Агостиной Филокомо (Agostina Filócomo) из Университета Насьональ де Рио-Негро — Седе Атлантика (UNRN — Sede Atlántica) представила наблюдательные доказательства этой теории. Она проанализировала данные наблюдений за источниками гамма-квантов в диапазоне энергий от ста мегаэлектронвольт до трехсот гигаэлектронвольт в отражательной туманности NGC 2071 в созвездии Ориона, полученные за 14 лет работы телескопа «Ферми» Ученые определили со статистической значимостью 3,2 сигмы, что в туманности есть непостоянный по времени (был активен около двух лет) источник гамма-излучения, порождавший кванты с энергиями выше ста гигаэлектронвольт. NGC 2071 представляет собой область звездообразования, содержащую популяцию протозвезд малой массы, поэтому исследователи считают, что именно мегавспышки звезд Т Тельца могут порождать высокоэнергетическое гамма-излучение. Оценка частоты подобных явлений — одно каждые 13,2 года при энергии вспышек 1037—1038 эрг. Однако стоит отметить, что, хотя в настоящее время это единственный сценарий, хорошо объясняющий данные наблюдений, он требует дальнейшей наблюдательной проверки. Ранее мы рассказывали о том, как выглядят пылевые «крылья» у звезды типа Т Тельца.