Физики из Франции обнаружили новый тип коллективных возбуждений в бозе-конденсате атомов хрома, имеющих «дополнительные» степени свободы за счет взаимодействия спина и внешнего магнитного поля. Измерив на практике и вычислив теоретически характерные частоты колебаний и энергетический спектр возникающих квазичастиц, ученые обнаружили, что эксперимент хорошо согласуется с теорией. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.
В классической механике координата и импульс частицы могут принимать произвольные значения, а потому движение любой системы, состоящей из N частиц, можно исчерпывающе описать траекторией в фазовом пространстве — 6N-мерном пространстве, по осям которого отложены координаты и проекции импульса каждой из частиц. Однако в квантовой механике координата и импульс связаны соотношением Гейзенберга, и произведение их неопределенностей не может быть меньше фиксированной величины (Δx∙Δp ≥ ħ/2). Из-за этого движение частиц квантуется, а фазовое пространство разбивается на ячейки объемом (2πħ)N. Чем меньше температура системы (то есть средняя энергия частиц) — тем меньше ей доступно ячеек в фазовом пространстве, и тем сильнее проявляются квантовые эффекты. В случае, когда частицы являются бозонами, то есть подчиняются статистике Бозе — Эйнштейна, ничто не запрещает им собраться в самом низком энергетическом состоянии, одинаковом для всех частиц; такое явление называют конденсацией, а возникающее в результате состояние вещества — конденсатом Бозе — Эйнштейна. Подробнее про это явление можно прочитать в нашем материале «Квантовые газы при низких температурах».
Из-за того, что все атомы бозе-конденсата «сидят» в одном и том же квантовом состоянии, при внешнем воздействии они ведут себя практически как одно целое. Поэтому явления, которые возникают в конденсатах, называют коллективными. Известные примеры коллективных явлений — это сверхтекучесть и сверхпроводимость; в последнем случае элементарные частицы (электроны) не являются бозонами сами по себе, однако объединяются в куперовские пары, которые тоже умеют «собираться» в одном состоянии. Хороший способ изучить коллективные явления — вывести конденсат из равновесия и возбудить в нем колебания. В качестве примера таких возбуждений можно привести «моды-ножницы» (Scissors Modes) или топологически стабильные вихри в конденсате холодных атомов рубидия-87; в свое время исследования этих возбуждений помогли лучше понять, как частицы газа взаимодействуют между собой.
В новой статье группа физиков под руководством Лоран Верна (Laurent Vernac) описывает коллективные возбуждения в не совсем типичном бозе-конденсате, имеющем «дополнительные» степени свободы за счет взаимодействия с внешним магнитным полем. Чтобы получить такой конденсат, ученые поместили в оптическую ловушку 40 тысяч атомов хрома-52, находящихся в нижнем спиновом состоянии (спин S = 3) с магнитным квантовым числом m = −3. В этом случае «дополнительная» степень свободы связана с ориентацией спинов. Затем исследователи наложили на конденсат однородное магнитное поле величиной около одного гаусса, выстроили с помощью радиоимпульса спины атомов перпендикулярно полю и добавили к нему небольшой постоянный градиент (так что проекция напряженности поля на ось абсцисс Bx = B0 + b∙x). Наконец, чтобы определить состояние конденсата спустя некоторое время после начала опыта, ученые выключали оптическую ловушку, накладывали на систему гораздо более сильный градиент магнитного поля и измеряли спектр поглощения системы. Этот подход напоминает опыт Штерна — Герлаха и позволяет разделить состояния с разной проекцией спинов, а потом измерить число частиц, которые в них находятся.
В результате ученые обнаружили, что населенность каждого из состояний pm(t) и расстояние δ(t) между полосками, возникшими после разделения, периодически изменяются со временем, причем колебания величин скоррелированы. Кроме того, амплитуда колебаний зависит от величины приложенного градиента поля b и стремится к нулю в пределе b → 0, а их частота заметно отличается от характерной частоты удерживающего потенциала оптической ловушки. Это значит, что оба вида колебаний должны быть связаны — другими словами, магнитное поле возбуждает в конденсате коллективную моду колебаний (квазичастицы), которая «перекачивает» энергию из спиновых степеней свободы в пространственные и обратно. Грубо говоря, можно представить, что атомы — это связанные друг с другом волчки, ось вращения которых совпадает с направлением спина. Во внешнем магнитном поле эти волчки поворачиваются, а их центр масс смещается; из-за связи каждый волчок увлекает своих соседей, поэтому колебания системы получаются коллективными.
Чтобы подтвердить это предположение, физики построили теоретическую модель, описывающую полученный конденсат. Эта модель предполагает, что в течение опыта конденсат постоянно остается локально поляризованным, то есть напоминает ферромагнетик, в котором спины в малой окрестности выбранной точки направлены в одну и ту же сторону, а полная длина спинов не изменяется (меняется только их ориентация). При таких предположениях конденсат можно рассматривать как ферромагнитную жидкость, которая описывается уравнением Гросса-Питаевского. Чтобы упростить решение уравнения, исследователи предложили анзац для пространственной зависимости спина и плотности конденсата — иначе говоря, угадали общий вид этих решений, затем подставили их в уравнение и определили недостающие коэффициенты и функции. Это позволило физикам найти дисперсию (энергетический спектр) возникающих в конденсате квазичастиц, а также характерные частоты и амплитуды колебаний. Оказалось, что теоретические значения хорошо совпадают с экспериментальными в пределе b → 0 (расхождение порядка трех процентов).
Стоит заметить, что квазичастицы, аналогичные увиденным в эксперименте коллективным колебаниям, также возникают в обычных кристаллических ферромагнетиках и называются магнонами (или спиновыми волнами). Тем не менее, бозе-конденсат атомов хрома разрежен гораздо сильнее (его плотность примерно в десять миллионов раз меньше плотности твердых ферромагнетиков), а потому напоминает скорее ферромагнитную жидкость.
Бозе-конденсаты часто помогают физикам изучать более сложные системы. Например, с их помощью ученым удалось смоделировать расширение Вселенной и одномерную электронную жидкость Латтинжера, увидеть осцилляции Блоха и ридберговские поляроны, получить трехмерные скирмионы и узловые солитонные волны, а также одновременно возбудить хиггсовскую и голдстоуновскую моду колебаний. Кроме того, иногда ученые находят в бозе-конденсате красивые явления — например, заставляют их рассыпаться фейерверком или принимать форму лягушки.
Дмитрий Трунин
Для этого физики косо сталкивали восемь плазменных струй
Британские и американские физики создали лабораторный аналог аккреционного диска, который возникает в космосе при падении газа на массивные объекты, например, черные дыры. В новом опыте, в отличие от предыдущих исследований, отсутствовали какие-либо стенки или ограничения для потоков — их закручивание происходило за счет нецентрального столкновения восьми плазменных струй. Плазменное кольцо продемонстрировало стабильность, что позволит в будущем исследовать роль магнитного поля в аккреции вещества. Исследование опубликовано в Physical Review Letters. Аккреционные потоки газа вокруг массивных тел встречаются во Вселенной довольно часто. Свет, испускаемый аккреционным диском, может свидетельствовать в том числе и о существовании черной дыры. Поведение газа, падающего на черную дыру, вызывает у исследователей множество вопросов, ответы на которые они добывают преимущественно теоретически. Лабораторные попытки понять физику аккреционного диска тоже существуют. Для этого физики создают потоки водно-глицериновых растворов или металлических расплавов в магнитном поле. Другой способ основан на подаче электрического тока на края холловской плазмы, удерживаемой постоянными магнитами. Недостатком всех этих методов остается наличие жестких границ, которые отсутствуют в космических процессах и искажают моделирование. Группа физиков под руководством Сергея Лебедева (Sergei Lebedev) из Имперского колледжа Лондона вместе с коллегами из США провели эксперимент, лишенный этого недостатка. Он заключался в косом сталкивании восьми плазменных струй, которые закручивались в кольцо. Их движение при этом напоминало движение вещества в аккреционном диске массивного тела. В эксперименте также образовывались характерные плазменные струи, перпендикулярные плоскости вращения. Установка физиков состояла из алюминиевых проволок толщиной 40 микрометров, расположенных в серединах ребер правильного восьмиугольника. Ученые пропускали через них импульсы большого тока (до 1,4 мегаампера на пике), что приводило к нагреву и абляции вещества. Магнитные поля формировали абляционные потоки и направляли их в середину установки, слегка отклоняя от центра. Столкновение потоков вещества формировало его в кольцо диаметром шесть миллиметров. Оно существовало не более 210 наносекунд, за время которого плазма делала от половины до двух оборотов. Физики следили за ее образованием и развитием в оптическом и экстремально-ультрафиолетовом диапазоне, что позволило исследовать распределение скоростей. Изображения показали, что плазменное кольцо стабильно в течение срока жизни, а само вращение происходит в квазикеплеровском режиме. Авторы также наблюдали плазменную струю, порожденную из вращающегося плазменного столба осевыми градиентами теплового и магнитного давления. Скорость вещества в ней составила 100±20 километров в секунду. Малый угол расходимости — 3±1 градус — свидетельствовал об отсутствии эффектов нестабильности. Струю также окружал плазменный ореол. В будущем авторы планируют продлить время жизни кольца за счет более долгих абляционных импульсов, для чего им потребуется использовать более толстые проволоки. Они убеждены, что замена алюминия на другие материалы позволит контролировать различные параметры магнитнодинамического потока. В будущем это позволит в лаборатории приблизиться к условиям, возникающим в астрофизических процессах, и понять роль нестабильности магнитных полей в аккреции вещества. Аккреционный диск — это не единственное явление, связанное с черными дырами, которое физики пытаются воспроизвести в лабораторных экспериментах. Ранее мы рассказывали, как течение воды в сливе раковины помогает изучать квазисвязанные состояния черных дыр, и как в конденсате Бозе — Эйнштейна подтвердили тепловой спектр излучения Хокинга.