Физики впервые получили трехмерные скирмионы — объемные структуры в конденсате Бозе — Эйнштейна с упорядоченной вихревой структурой спинов, в которой спины в центре и на краю имеют противоположное направление. Устойчивый клубок электрического и магнитного полей в этом трехмерном скирмионе можно рассматривать в качестве возможной квантовой модели шаровой молнии, пишут ученые в Science Advances.
В некоторых магнитных материалах может возникать скирмионы, это особый тип квазичастиц, которые представляют собой вихревые структуры, обладающие обратной намагниченностью. На сегодняшний день получить скирмионы экспериментально удавалось лишь в плоских пленках на поверхностях различных материалов, и все они имели выраженную двумерную структуру. Тем не менее, теоретически было предсказано возможное существование и трехмерных скирмионов — так называемых скирмионов Шанкара, в которых за счет точного управления спиновым полем конденсата Бозе — Эйнштейна с ориентированной структурой спинов возникает особая структура скрученных в клубок электрического и магнитного полей.
Группа физиков из США и Финляндии под руководством Ли Вон-Дже (Wonjae Lee) из Амхерстского колледжа впервые получила трехмерные скирмионы экспериментально, а также изучила их устойчивость и эволюцию с течением времени. Для этого авторы работы использовали ферромагнитный спин-поляризованный конденсат Бозе — Эйнштейна в облаке атомов рубидия 87Rb, состоянием спинов в котором можно управлять, изменяя распределение внешнего магнитного поля.
За счет линейной комбинации пространственно распределенного квадрупольного и быстро затухающего магнитных полей ученым удалось получить необходимую спиновую структуру в конденсате атомов, зафиксированных с помощью оптической ловушки. Ориентация спинов в таком трехмерном скирмионе меняется непрерывно, без разрывов и сингулярностей. При проходе от одного края скирмиона до другого спин совершает два полных оборота.
Такая структура приводит к тому, что вокруг центра скирмиона возникают кольцевые магнитные поля, и весь скирмион становится своеобразным клубком из линий электрического и магнитного полей, свернутых в один узел. Изменение структуры скирмиона с течением времени ученые исследовали, получая изображение распределений плотности частиц конденсата с разным спиновым состоянием.
По словам авторов работы, полученные структуры оказались довольно устойчивыми и могут существовать десятые доли миллисекунды. Результаты, полученные экспериментально, ученые сравнили с численным моделированием и обнаружили, что данные хорошо согласуются друг с другом, что подтверждает успешность эксперимента и образование в конденсате Бозе — Эйнштейна нужной спиновой структуры.
Ученые отмечают, что возникающая в трехмерных скирмионах устойчивая электромагнитная структура может быть квантовым аналогом шаровой молнии. Стабильность подобных квантовых структур может подтвердить возможность существования шаровых молний, время жизни которых значительно превышает длительность обычного электрического разряда в атмосфере. При этом, поскольку саму шаровую молнию получить в лабораторных условиях не удается, квантовый скирмионный аналог может стать полезным инструментом для изучения ее свойств.
Несмотря на то, что теоретически существование различных типов скирмионов(как двумерных, так и трехмерных) было предсказано еще несколько десятков лет назад, получать их экспериментально стало возможно только сейчас. Например, недавно ученые впервые создали двумерные магнитные антискирмионы, в которых на границах доменов чередуются участки неелевского и блоховского типов взаимодействия между спинами.
Александр Дубов
Это поможет добывать руду и обрабатывать ядерные отходы
Европейские физики теоретически и экспериментально исследовали цикличные процессы всплытия и опускания на дно зерен арахиса в пиве, который называют «танец арахиса». Для этого они в течение двух с половиной часов снимали на камеру этот процесс в лаборатории. Анализируя эти результаты, ученые выяснили, что танец происходит из-за поверхностных свойств арахиса, на которых образование пузырьков предпочтительнее, чем на стенках стакана. Исследование опубликовано в Royal Society Open Science. В России распространен фокус, который показывают на вечеринках с шампанским. Для этого в полный бокал игристого напитка бросают изюминку, кусочек ананаса или дольку шоколада. Брошенное в жидкость тело сначала тонет, но затем всплывает под действием пузырьков газа, зародившихся на его краях. У поверхности пузырьки разрушаются и цикл повторяется. В аргентинских барах существует такая же традиция, только вместо шампанского там используют пиво, а вместо изюма — арахис. Там этот трюк получил название «танец арахиса». Несмотря на качественное понимание такого танца, физики плохо понимают его детали. Вместе с тем, такие процессы происходят не только на вечеринках или в барах, но и в природе: предполагается, что именно так плотный магнетит всплывает в магме. Похожим же образом горняки отделяют железо от руды. Разобраться в этом вопросе решили Луис Перейра (Luiz Pereira) из Университета Людвига Максимилиана и его коллеги из Англии, Германии и Франции. Для этого они провели экспериментальны с арахисом в пиве и подтвердили их результаты численными вычислениями. Физики наполняли резервуар размером 100 × 100 × 200 миллиметров одним литром лагера и опускали в него 13 обжаренных зерен арахиса Arachis hypogaea. Весь процесс они снимали на цифровую камеру. На начальном этапе все зерна плавали на поверхности из-за активного образования пузырей в перенасыщенном углекислом газом пиве. Примерно через 25-30 минут количество пузырьков уменьшалось и арахис начинал цикличное движение вверх и вниз под действием описанного выше механизма. Танец всех зерен прекратился примерно через 150 минут после начала эксперимента — количество газа, растворенного в пиве, опустилось ниже пороговой отметки. Для анализа результатов эксперимента авторы разбили задачу на три части: зарождение пузырьков, плавучесть и цикличность. Для этого им потребовалось знать капиллярные свойства системы, такие как плотность пива и газа, поверхностное натяжение, углы смачивания и так далее. Первое они рассчитали с помощью пивного онлайн калькулятора, второй — взяли из литературы, а для получения информации об углах ученым потребовалось провести дополнительные эксперименты по смачиванию пива стеклом и плоской частью арахиса. В результате физики смогли воспроизвести основные особенности поведения арахиса в пиве, которые они увидели в эксперименте. Так, они доказали, что арахис обладает поверхностью, на которой образование пузырей энергетически более выгодно, чем на стенках стакана. Если бы это было не так, танец арахиса был бы невозможен. Ученые отмечают, что арахис в пиве может служить модельной системой не только для задач геологии и добычи полезных ископаемых, но и в обработке ядерных отходов. Один литр пива — это не так много, когда речь идет о физическом эксперименте (впрочем, не только). То ли дело 30 литров! Именно столько потратили физики из Германии и Кореи, изучая стабильностью пивной пены при розливе «снизу-вверх».