Немецкие преподаватели физики изготовили универсальный спектрометр в схеме Черни — Тернера с использованием конструктора LEGO и подручных материалов. Авторы показали, что с его помощь можно исследовать спектры атомной эмиссии, пропускания, отражения и флуоресценции. Перестройка прибора под разные задачи занимает несколько минут, а суммарная стоимость прибора не превышает 500 евро, что делает его отличным инструментом для лабораторных работ в школах и университетах. Результаты работы опубликованы в Physics Education.
Существует определенный разрыв в технологической базе, используемой для научных и образовательных целей. Оборудование, которое можно встретить в лабораториях школ или ВУЗов с не слишком большим бюджетом, как правило, годится для изучения только самых простых явлений. Фирмы, занимающиеся производством учебных лабораторных комплексов, стараются сократить этот разрыв, однако их продукция все равно остается довольно дорогой.
Это заставляет педагогов и инженеров изобретать способы, чтобы сделать максимально сложные явления доступными для исследования как можно большему числу людей. Не последнюю роль в этом играют смартфоны и еда. Особый интерес представляет продукция, полученная с помощью массового производства, например, батончики и печенье, поскольку в этом случае сохраняется высокая повторяемость отдельных единиц товара, а значит, и высокая степень воспроизводимости опытов, проведенных с их помощью.
В этом плане конструктор LEGO и совместимые с ним конструкторы оказывают инженерам большую помощь. Унифицированность форм-факторов его деталей, достигаемая с помощью литья под давлением, гибкость конструирования и надежность получающихся таким образом структур вкупе с его дешевизной помогают в изучении акустики и микрофлюидики, в 3D-печати и даже строительстве.
На этот раз к знаменитому конструктору обратились преподаватели из Оснабрюкского университета, Германия, во главе с Мирко Имлау (Mirco Imlau). Их задачей было создать дешевую установку по оптической спектроскопии для углубленного изучения студентами атомной и твердотельной физики. И хотя в литературе можно встретить инструкции по сборке дешевых самодельных спектрометров, большинство из них заточены под узкие экспериментальные задачи, а также имеют ограниченное спектральное разрешение. Авторам же удалось изготовить модульный прибор на базе деталей LEGO, который позволяет решать сразу несколько спектроскопических задач с минимальным временем перестройки и небольшой стоимостью.
Ученые выбрали схему Черни — Тернера в качестве модели для создания спектрометра. Она включается в себя входную щель, два вогнутых зеркала, дифракционную решетку и какой-либо приемный элемент. Все оптические компоненты были смонтированы на большую LEGO-пластину, из деталей конструктора авторы также собрали корпус спектрометра и крепеж для компонентов. Роль входной щели играли два бритвенных лезвия, а в качестве дифракционной решетки физики использовали кусочек от компакт-диска, который хорошо подходит на эту роль. Спектральные компоненты в схеме Черни — Тернера становятся пространственно разделенными, что авторы считывали с помощью коммерческого линейного массива ПЗС. С учетом того, что часть оптических компонентов спектрометра была куплена у профильных фирм, стоимость прибора достигла 500 евро, что, однако, существенно дешевле коммерческих спектрометров.
Физики продемонстрировали применимость своего прибора к нескольким учебным задачам. Для проведения атомно-эмиссионной спектроскопии они использовали стандартную для таких лабораторных работ ртутную лампу. В качестве заданий для студентов может выступать как юстировка ПЗС-линейки по известному спектру, так и изучение самих спектральных линий на настроенном приборе. Спектральное разрешение, достигнутое авторами, не превышало одного нанометра, что в несколько десятков раз лучше, чем у DIY-спектрометров, описанных в литературе.
Прибор также поддерживал работу в режиме спектроскопии пропускания, отражения и флуоресценции. Физики смогли провести на нем работу по измерению концентрации раствора перманганата калия в зависимости от интенсивности пиков в спектре пропускания, снять спектр излучения раствора флуоресцеина, а также посмотреть, как отличаются друг от друга спектры отражения разноцветных деталек LEGO. Время перестройки спектрометра от одного режима к другому не превысило пяти минут, что очень важно, учитывая ограниченное время школьных или университетских занятий. Авторы подчеркивают, что конструктор LEGO подходит не только для постройки спектрометра по схеме Черни — Тернера. Таким способом можно будет собрать множество других оптических схем, начиная от интерферометра Майкельсона и заканчивая системами с генерацией второй гармоники лазерного излучения.
Ранее мы рассказывали, как конструктор LEGO использовали для обучения программированию.
Марат Хамадеев
А также измерит расстояние до них
Американские ученые разработали технологию пассивного теплового зрения HADAR, которая по инфракрасному изображению получает информацию о температуре, материалах и текстуре поверхности объектов, их излучательной способности, а также умеет измерять расстояние. Технология позволяет в ночных условиях получать изображение, сопоставимое по качеству со стереоскопическими изображениями, получаемыми обычными RGB камерами при дневном освещении. Статья опубликована в журнале Nature. Для автономной навигации и взаимодействия с людьми роботам и беспилотникам нужна информация об окружении, которую они получают с помощью камер, лидаров, сонаров или радаров. Однако обычные камеры зависят от условий освещенности и плохо работают в ночное время и при плохой погоде. Кроме этого информация, получаемая с камер не содержит физического контекста, что может приводить к некорректной работе нейросетевых алгоритмов автопилота, который, к примеру, не может отличить настоящего человека от манекена. Активные сенсоры, такие как лидары и радары, при резком росте их числа начинают взаимно влиять друг на друга. Выходом могло бы стать использование в условиях недостаточной видимости камер, работающих в инфракрасном диапазоне. Однако из-за так называемого «эффекта призрачности» получаемые тепловизором изображения обычно выглядят как пятна без четкой текстуры. Это связано с тем, что поверх отражающихся от объекта инфракрасных лучей, которые несут информацию об особенностях его рельефа, накладывается его собственное тепловое излучение, которое засвечивает эту полезную информацию. Группа ученых под руководством Зубин Джакоб (Zubin Jacob) из Университета Пердью смогла справиться с этой проблемой. Они разработали технологию под названием HADAR (акроним от слов heat-assisted detection and ranging), которая с помощью машинного обучения извлекает из изображений, полученных в инфракрасном диапазоне, информацию о температуре объектов, излучательной способности материалов, из которых они состоят, а также их физической текстуре. Кроме того, технология позволяет определять расстояние до объектов на изображении. Выделение информации о собственном излучении объектов позволяет избавиться от «эффекта призрачности» и получить информацию о текстуре. Для этого авторы используют данные из библиотеки материалов, которая содержит информацию об их излучательной способности. Инфракрасное изображение фиксируется с помощью гиперспектральной камеры, после чего данные поступают на вход нейросетевой модели, которая производит декомпозицию исходных данных, выделяя из них информацию о температуре, собственном излучении и текстуре. Для обучения алгоритма исследователи использовали как настоящие изображения, полученные с помощью камеры, так и множество сгенерированных трехмерных сцен. Возможности технологии демонстрирует одна из сцен, на которой при слабом освещении запечатлен автомобиль черного цвета и человек, рядом с которым установлен вырезанный из картона портрет Альберта Эйнштейна в натуральную величину. Изображения, полученные с помощью обычной камеры, лидара и HADAR затем использовали для определения объектов с помощью алгоритма распознавания изображений. На изображении, полученном с помощью обычной камеры, алгоритм ошибочно распознал двух людей, приняв картонную фигуру за человека. На данных, полученных лидаром, оказалось невозможно определить автомобиль. При этом HADAR смог выделить все составляющие сцены, а также определить, что одна из человеческих фигур имеет сигнатуру краски на поверхности, а вторая покрыта тканью. Созданная технология может значительно улучшить системы автономной навигации беспилотных транспортных средств и роботов, дополнив уже существующие системы или даже заменив их. HADAR позволяет определять объекты и измерять расстояние по данным, полученным в ночное время, так же хорошо, как это делают традиционные системы компьютерного зрения, которые используют данные с камер в условиях дневного освещения. По словам авторов работы, в дальнейшем им предстоит решить проблему высокой стоимости оборудования для гиперспектральной съемки и невысокой производительности алгоритма. Сейчас процесс получения изображений и их обработки занимает минуты, но для работы в режиме реального времени это время необходимо сократить. Ранее мы рассказывали, как физики создали лидар, способный распознать метровые детали с рекордного расстояния в 45 километров в условиях высокого шума и слабого сигнала.