Преподаватели материаловедения из Великобритании рассказали об использовании вафель с карамелью в шоколадной глазури в качестве объектов исследования в дистанционном лабораторном практикуме по изучению композитных материалов. Задачей студентов было подвергать вафли нескольким механическим тестам на излом у себя дома и давать качественное описание опыта, в то время как преподаватели делали то же самое на лабораторном оборудовании с точным измерением параметров. Сравнение собственных и лабораторных результатов, а также их интерпретация помогли студентам лучше понять механику процессов, происходящих в многослойных структурах. Статья с результатами работы опубликована в Physics Education.
Композитными материалами называют материалы, которые состоят их двух или более компонент с различными физическими и химическими свойствами. Особенность таких материалов в том, что правильная комбинация компонентов создает качественно новые свойства, которые невозможно получить простой суперпозицией исходных свойств. Если говорить о механике, то речь, как правило, идет о прочности, легкости, жесткости и так далее. Распространенный пример композитного материала — это листы фанеры.
Изучение таких структур сложно представить без разнообразных механических тестов, которые проводятся в условиях лаборатории на специально предназначенном для этого оборудовании. Это также касается и образовательного процесса, включающего в себя лабораторные работы студентов. Пандемия COVID-19, однако, внесла коррективы в учебные программы всего мира, и сильнее всего от нее пострадали именно их лабораторные части. Это сказывается на качестве образования в прикладных технических специальностях, в том числе в физике композитных материалов. Без доступа к лабораториям студенты в большинстве случаев вынуждены довольствоваться лишь дистанционной демонстрацией опытов, поскольку проведение их в домашних условиях, как правило, невозможно.
Группа преподавателей материаловедения из Университета Шеффилд, Великобритания, при участии Джулиана Дина (Julian Dean) попыталась скомпенсировать ущерб, нанесенный пандемией, предложив студентам исследовать в качестве композитного материала вафли с карамелью в шоколадной глазури популярной марки Tunnock`s, которые они могли купить в любом магазине. Идея преподавателей заключалась в том, чтобы предложить студентам, не выходя из дома, провести над вафельными батончиками серию испытаний на трехточечный изгиб и качественно зафиксировать результаты проведенного опыта. Сотрудники университета проводят те же самые опыты в лаборатории, где уже подробно фиксируют все результаты и передают их студентам.
Выбранные для опытов батончики представляют собой композит с сэндвич-структурой длиной 92 мм, толщиной 19 мм и шириной 27 мм из пяти слоев вафель, между которыми расположены четыре слоя карамели. Сверху вафельный батончик покрыт шоколадной глазурью, чьи эстетические и вкусовые свойства были оценены авторами очень высоко, однако ее влияние на механические свойства было ничтожным.
Для исследования механических свойств вафель с карамелью авторы использовали испытания на трехточечный изгиб. Они клали батончик на две симметричные неподвижные опоры и давили наконечником сверху на его середину. Ученые могли измерять оказываемое давление и смещение точки (деформацию), к которой оно прикладывается. Испытания проводились для батончиков трех разных температур: комнатной (примерно 20 градусов), низкой (после десяти минут в морозильной камере, примерно −5 градусов) и высокой (примерно 30 градусов). Сами батончики были ориентированы в пространстве двумя способами: в одном случае слои вафель и карамели были перпендикулярны прикладываемой силе, в другом — параллельны (то есть сила действует на батончик сбоку).
Студентам же предлагалось проводить испытания вручную у себя дома. В роли наконечника следовало использовать сведенные вместе к середине батончика большие пальцы, а остальные пальцы играли роль опоры. Конечно, измерять прикладываемое пальцами давление студенты не могли, но им было предложено записывать тактильные ощущения и звуки, которые они слышат, а пронаблюдать характер распространения трещины и форму разрыва. По окончанию опытов они сравнивали свои результаты с графиками зависимости нагрузки от деформации, предоставленными преподавателями.
Во всех опытах поведение батончика существенно отличалось для случаев разной ориентации. При перпендикулярной ориентации структура выдерживала меньшие давления, однако само разрушение имело более протяженный характер. Авторы объясняли это тем, что более податливые слои карамели перераспределяли силы и натяжения, действовавшие на более жесткие вафельные слои. При параллельной же ориентации батончик выдерживал больше давление, но трещина в нем возникала гораздо быстрее вместе с характерным звуком.
Повышение температуры сделало образец пластичнее, но менее прочным, что сильнее проявилось для перпендикулярной ориентации, а понижение — наоборот. На графиках зависимости нагрузки от деформации для перпендикулярной ориентации холодных образцов авторами была отмечена характерная пилообразная структура. Ее возникновение связано с тем, что разрушение всего образца происходит послойно. После разрушения каждого вафельного слоя карамель перераспределяет нагрузку, и поэтому измеряемое давление несколько проседает. С ростом деформации оно снова растет, пока не сломает следующий слой, и так далее.
Ученые отметили, что такое поведение материала может измениться, если температура опустится ниже особой отметки, известной как температура хрупко-пластичного перехода. Это довольно опасное свойство материалов, которое уже приводило к катастрофам. В частности известно, что из-за него страдали транспортные пароходы типа «Либерти», и оно даже стало одной из причин гибели «Титаника».
Чтобы исследовать этот переход в вафельных батончиках, авторы охладили их до температуры −192 градуса по цельсию с помощью жидкого азота (этот опыт сопровождался предупреждением не выполнять его дома). В результате, анализируя график зависимости нагрузки от деформации для перпендикулярной ориентации, ученые не увидели пилообразного характера давления. Трещина образовалась при очень малой деформации, снизив напряжения до уровня, при котором она временно прекратила движение. Однако увеличение деформации в конце концов привело к полному разрушению батончика.
В заключении авторы отмечают, что целью их исследования было разработать такой эксперимент, который мог бы с помощью простых тестов помочь студентам понять свойства композитов с сэндвич-структурой. Они подчеркивают, что предложенная ими процедура может быть проведена, не выходя из дома, с применением материалов, которые легко купить в магазине. Ученые надеются, что проведенные со студентами опыты поднимут их мотивацию к дальнейшему изучению материаловедения, а также даст им идеи, какие еще лакомства они могут испытать.
Физики часто пытаются наглядно описать явления, которые происходят с предметами вокруг нас. Ранее они научились ломать спагетти пополам, а недавно разобрались, что будет, если сгибать пачку листов.
Марат Хамадеев
Роль магнитного поля сыграло туннелирование в оптической решетке
Физики впервые экспериментально сгенерировали дробные квантовые состояния Холла в двумерной системе ультрахолодных атомов. Как сообщается в Nature, в созданных состояниях удалось пронаблюдать основные свойства дробных холловских: подавление двухчастичного взаимодействия, сильные (анти)корреляции плотности и дробную величину аналога холловской проводимости. Дробный квантовый эффект Холла возникает в двумерном электронном газе в сильных магнитных полях. Одноименно заряженные электроны отталкиваются друг от друга, однако не могут разлетаться прямолинейно из-за сильного магнитного поля, которое резко закручивает импульс частиц и порождает сложное коллективное движение в системе: поведение отдельных частиц не независимо, а наоборот сильно скоррелировано. В таких ситуациях вместо рассмотрения каждого электрона в отдельности изучают коллективную волновую функцию системы, выделяя основное состояние системы (низшее по энергии) и возбужденные состояния (с энергией выше основного) — квазичастицы. При этом эффективная масса или заряд последних не обязаны совпадать с характеристиками исходных частиц. Так, еще в восьмидесятых годах прошлого века было установлено, что в дробном квантовом эффекте Холла заряд собравшихся из коллективных электронных возбуждений квазичастиц оказывается дробным по отношению к заряду самих электронов. Этим можно объяснить наблюдаемую дробную холловскую проводимость: в обычной ситуации эта величина в единицах отношения квадрата заряда электрона к постоянной планка (обратный квант электрического сопротивления) равна целому числу, а в дробном эффекте Холла принимает нецелые значения. Более того, даже статистика таких квазичастиц может быть промежуточной по отношению к стандартной классификации элементарных частиц на бозоны и фермионы: состояния не обязаны быть строго симметричными или антисимметричными по отношению к перестановкам. Такие экзотические свойства делают дробные холловские состояния перспективным инструментом для квантовых вычислений. При этом вместо того чтобы создавать и контролировать сильные магнитные поля во многоэлектронных системах, физики стремятся создать аналогичные по свойствам, но легко контролируемые квантовые системы — например, из ультрахолодных атомов в оптической решетке. Тем не менее, до недавнего времени об экспериментальной реализации дробных холловских состояний в системах ультрахолодных атомов не сообщалось. Теперь физики из Австрии, Бельгии, Германии, США и Франции под руководством Маркуса Грейнера (Markus Greiner) из Гарвардского университета смогли создать дробные холловские состояния в системе двух ультрахолодных атомов рубидия-87. Для этого исследователи размещали атомы в квадратной оптической решетке (на пересечении двух лазерных лучей) размером в четыре ячейки с каждой стороны, и на протяжении эксперимента контролировали их положение (с разрешением в одну ячейку) с помощью флуоресцентных изображений. Первоначально атомы находились соседних краевых ячейках решетки. Затем авторы, контролируя параметры ячейки, по очереди адиабатически медленно создавали туннелирование по каждой из осей решетки, симулируя тем самым поведение заряженных частиц в сильном магнитном поле. В результате пара атомов рубидия переходила в коллективное состояние, которое физики фиксировали и после анализировали сходство с состояниями дробного холловского типа по свойствам получившегося пространственного распределения плотности и зависимости этих свойств от величины эффективного магнитного поля. В результате авторы обнаружили в итоговых состояниях все ключевые характеристики дробных холловских состояний. Во-первых, удалось зарегистрировать подавление двухчастичного взаимодействия: начиная с критических значений магнитного потока (при переходе к коллективному состоянию) в несколько раз (по сравнению с обычным состоянием) снижалась вероятность наблюдать оба атома в одной и той же ячейке решетки. Во-вторых, эффективная холловская проводимость приняла дробное значение — этот параметр исследователи оценивали через производную средней плотности атомов в центральных четырех ячейках по величине эффективного магнитного потока. Наконец, в-третьих, при надкритической величине эффективного поля кратно возрастали значения (анти)корреляции плотности по всей оптической решетке, что свидетельствует о переходе к зависимому, коллективному поведению системы. При этом сходство оказалось не только качественным, но и количественным: измеренные величины совпали с теоретическим прогнозом для дробного холловского состояния в пределах погрешности, что позволяет заявить о надежной регистрации этого состояния в системе ультрахолодных атомов. Кроме того, чтобы оценить качество адиабатической подготовки коллективного состояния из исходного, в части опытов физики вместо фиксации результата проделывали подготовку в обратной последовательности, от конечного состояния к начальному. Вероятность обнаружить в этом «новым начальном» состоянии исходное начальное исследователи использовали как количественную оценку адиабатичности своих манипуляций: эта величина составила около 43 процентов. По словам авторов, экспериментальный результат является первым шагом в освоении контролируемых манипуляций с сильно скоррелированными состояниями ультрахолодных атомов и в будущем может оказаться практически полезным для квантовых технологий. Ранее мы рассказывали о том, как орбитальное движение атомов повлияло на формирование ультрахолодных димеров в оптических решетках и о том, как свет помог собрать ультрахолодную молекулу из двух атомов.