Американские физики теоретически и экспериментально исследовали, что происходит с печеньем Oreo при испытании на скручивание. Они в лабораторных условиях подтвердили распространенное наблюдение, что при разделении печенья таким способом крем стремится остаться на одной из его сторон. Ученые также разработали 3D-печатный реометр (который назвали «ореометр») — для повторения этого эксперимента в домашних условиях. Исследование опубликовано в Physics of Fluids.
Реология изучает деформацию и текучесть вещества со сложной или неньютоновской вязкостью. Эта наука занимает промежуточное положение между теорией упругих тел и гидродинамикой. Ее достижения находят применение во множестве прикладных дисциплин, начиная от материаловедения и заканчивая физиологией. Менее очевидную, но не менее важную роль реология играет в науке о еде. Понимание того, как ведет себя вязкая жидкость, помогает изготавливать сыры, шоколад, соусы и многое другое.
Реакция некоторых пищевых продуктов на какое либо воздействие зачастую помогает понять, как в схожих условиях поведут себя их несъедобные аналоги. Например, вафельные батончики с прослойками из карамели оказались хорошими аналогами композитных материалов в плане тестов на излом. Точно так же поворот одной части печенья Oreo, представляющего собой сэндвич из мучных дисков и вязкого крема между ними, относительно другой может служить моделью осевого контакта вращающихся валов или разрыва нитей из вязкоупругих чернил в 3D-принтерах.
Скручивание печенья Oreo стало неотъемлемой частью американской культуры его потребления. В результате этой процедуры крем, как правило, остается лишь на одном из дисков печенья. Не без помощи компании Nabisco, производящей Oreo, скручивание печенья превратилось в 90-х годах прошлого века в США в форму жеребьевки, став аналогом игры «Камень, ножницы, бумага» или подбрасыванию монеты.
Кристал Оуэнс (Crystal Owens) с коллегами из Массачусетского технологического института решили подробнее разобраться в физике, происходящей при скручивании печенья Oreo. С точки зрения реологии эта проблема представляет собой задачу о поведении мягкого вещества, зажатой между двумя параллельными пластинами. Под мягким веществом (телом) понимаются аморфные тела, которые начинают течь только при приложении механического напряжения выше некоторого порога. Такими свойствами обладает множество материалов как в кулинарии (тесто, мороженое), так и за ее пределами (лава, строительные растворы).
При повороте одной половинки Oreo относительно другой, крем, зажатый между дисками, сначала испытывает деформацию сдвига, затем течет, пока, наконец, не разрывается, деля печенье пополам. При этом возможно два сценария: когезионный (когда разрыв происходит в толще крема) и адгезионный (когда разрывается связь между кремом и одним из дисков). Как показывает практика, последний тип разрыва встречается гораздо чаще.
Физики решили разобраться в деталях этого процесса с помощью лабораторного реометра, который позволяет строить зависимость между напряжением и деформацией материала при испытании на скручивание, а также моделированием этого процесса. Они исследовали то, как на напряжения и распределение крема влияют скорость вращения, количество крема, а также сорт печенья. В серии дополнительных опытов авторы изучили эффект отложенного порога, когда разрушение печенья происходит спустя некоторое время после приложения напряжения, а также влияние размягчения мучного диска под действием молока.
Результаты опытов показали, что в подавляющем большинстве случаев происходит адгезионный разрыв печенья, причем в 80 процентов случаев сторону, на которой останется крем, можно предсказать, глядя на то, какой стороной печенье было ориентировано в пачке. Авторы связывают это с особенностями конвейерного производства печенья: сначала крем наносится на один из дисков, затем накрывается вторым и в таком порядке фасуется. Они предполагают, что такая форма изготовления определяет разницу в адгезиях между разными частями печенья.
В конце своего исследования физики разработали и применили 3D-печатную версию бытового реометра для исследования печений Oreo (либо иных объектов той же геометрии), который они остроумно назвали «ореометром». Собранное устройство не требует электропитания. Для его работы требуются лишь резинки и набор одинаковых монет, а суммарная стоимость производства оценивается авторами в шесть долларов США. Монеты выступают в качестве груза для создания момента сил, а резинки нужны для регулировки. Исследователи надеются, что такое устройство поможет изучать «ореологию» большому количеству желающих в домашних условиях.
Недавно мы сообщали о том, как физики теоретически и экспериментально исследовали слипание сваренной лапши.
Марат Хамадеев
В будущем это позволит проводить масштабные квантовые симуляции
Немецкие физики продемонстрировали технологию создания трехмерных оптических решеток на основе эффекта Тальбота. Он заключается в формировании волнового паттерна — «ковра» — сразу за дифракционной решеткой, в котором изображение щелей периодически повторяется. Таким способом ученым удалось загрузить более десяти тысяч атомов в бездефектную трехмерную решетку и продемонстрировать в ней адресную работу с атомами. Исследование опубликовано в Physical Review Letters. Пленение атомов светом сделало возможным прорывы в самых различных областях физики: от ультрахолодной химии и физики квантовых газов до квантовых вычислений и атомных часов. Подробнее о том, как работает эта технология в оптических пинцетах, мы рассказывали в материале «Скальпель и пинцет». Ряд задач требует пленения сразу большого числа атомов. Наиболее частым способом сделать это стали двумерные оптические решетки. Их формируют либо на пересечении стоячих волн, ориентированных под углом друг к другу, либо создавая систему оптических пинцетов из одного луча с помощью акустооптических модуляторов или металинз. Выход в третье измерение станет главным путем масштабирования технологий на основе пленения множества атомов. Физики умеют создавать трехмерные решетки с помощью скрещивания трех пар лазерных лучей. Ранее это позволило увеличить точность атомных часов. Но пока это технология довольно сложная и допускает малую вариативность параметров решетки. Мальте Шлоссер и его коллеги из Дармштадтского технического университета предложили новый подход к созданию трехмерных оптических решеток. Он основан на явлении, которое носит название эффект или «ковер» Тальбота. Он возникает непосредственно за дифракционной решеткой (то есть, в ближнем поле) после того, как на нее падает плоская волна, и представляет собой сложный фрактальный паттерн из областей повышенной и пониженной интенсивности. Важно при этом, что изображение щелей повторяется на расстояниях, равных полуцелому числу длины Тальбота. В какой-то момент, определяемый шириной дифракционной решетки, «ковер» заканчивается, и лучи расходятся в дальнее поле согласно теории Фраунгофера. Идея авторов заключается в том, чтобы загружать атомы в эти дополнительные слои с массивами световых пятен. При реализации этой идеи физики заменили дифракционную решетку двумерным массивом микролинз размером 166×166 штук и периодом 30 микрометров и облучали его светом титан-сапфирового лазера с длиной волны 796,3 нанометра. После прохождения массива микролинз свет попадал в обычную оптику, с помощью которой авторы настраивали параметры «ковра». В их опыте период решетки был равен 10 микрометрам, а расстояние между слоями — 133 микрометрам. Затем ученые загружали в получившуюся решетку охлажденные атомы рубидия-85. Атомы захватывались в узлы с вероятностью 60 процентов, поэтому физикам потребовался дополнительный пинцет, чтобы расставить атомы в бездефектные массивы в каждом слое. В результате им удалось получить 17 таких слоев по 777 атомов в каждом. Физики исследовали возможность масштабирования получившихся решеток. Они выяснили, что общее число атомов, которое можно будет пленить таким способом, может быть доведено до ста тысяч, если увеличить мощность лазера всего в пять раз. Помимо этого авторы продемонстрировали возможности адресации атомов, выстроив их в антиферромагнитный порядок по спину, а также решетки с более сложной геометрией. Предложенная физиками технология в перспективе способна масштабировать квантовые компьютеры и квантовые симуляторы на основе ридберговских атомов. Для этого им нужно будет придумать, как сократить расстояние между слоями, сделав его сопоставимым с периодом внутри слоя. Квантовыми симуляциями на плененных ридберговских атомах занимается группа Лукина, которая изготовила 256-кубитный квантовый симулятор. Подробнее об их работе мы рассказывали в материале «Пятьдесят кубитов и еще один».