Итальянские физики теоретически описали свойства газа бозонов, живущих на двумерной сфере. Оказалось, что при понижении температуры такая система испытывает два фазовых перехода: сначала частицы собираются в конденсат Бозе — Эйнштейна, а потом превращаются в сверхтекучую жидкость. Для обоих переходов физики рассчитали критическую температуру, а также нашли плотность фаз при произвольной температуре. Статья опубликована в Physical Review Letters, препринт работы выложен на сайте arXiv.org.
Если охладить газ бозонов до температуры порядка нескольких кельвинов, квантовые эффекты в нем станут настолько сильными, что газ превратится в конденсат Бозе — Эйнштейна. В этой фазе вещества все его атомы находятся в одном и том же квантовом состоянии, а в целом конденсат можно описать единственной волновой функцией. Впервые новую фазу вещества теоретически предсказали Шатьендранат Бо́зе и Альберт Эйнштейн, а на практике его впервые получили в 1995 году Эрик Корнелл и Карл Вимен. Подробнее про конденсат Бозе — Эйнштейна можно прочитать в блоге «Квантовые газы при низких температурах».
За последние двадцать лет физики хорошо изучили свойства бозе-эйнштейновских конденсатов, поставив тысячи экспериментов с холодными атомными газами. Более того, с помощью бозе-конденсатов ученые часто моделируют более сложные системы — например, пространственно-временной кристалл, излучающую черную дыру или ускоренно расширяющуюся Вселенную. Тем не менее, несмотря на богатство явлений, уже описанных для бозе-конденсатов, в этой науке до сих пор остаются белые пятна. В частности, до сих пор ученые не задумывались, как конденсат ведет себя в пространстве с нетривиальной геометрией (например, на сфере — многообразии с постоянной положительной кривизной).
Физики Андреа Тонони (Andrea Tononi) и Лука Саласнич (Luca Salasnich) впервые теоретически исследовали свойства бозе-конденсата, сформировавшегося на двумерной сфере. Сначала ученые рассмотрели упрощенную ситуацию, в которой частицы друг с другом не взаимодействуют, поэтому их движение можно считать независимым. Следовательно, каждой такой частице можно сопоставить орбитальное квантовое число (l=0,1,2,...), которое описывает угловой момент частицы и энергию ее движения, и магнитное квантовое число, нумерующее вырожденные энергетические уровни (m=−l,...,l). В равновесном случае распределение частиц по энергиям сводится к распределению Бозе. Зная это распределение и учитывая, что в бозе-конденсате химический потенциал обращается в ноль, физики рассчитали критическую температуру, при которой газ начинает конденсироваться. Тем же способом ученые нашли среднее число атомов конденсата при температуре ниже критической. Как и ожидалось, в пределе бесконечно большой сферы обе эти величины обращались в ноль: на двумерной плоскости бозе-конденсат образоваться не может. В остальных случаях поведение конденсата практически не зависело от радиуса сферы.
Разобравшись с простым примером (который вполне можно давать студентам на экзамене по статистической физике), ученые перешли к более сложному случаю взаимодействующих частиц. Для простоты ученые рассматривали возбуждения над конденсатом, нарушающие симметрию системы относительно поворотов. Интегрируя по всевозможным конфигурациям частиц в основном состоянии и всевозможным возбуждениям, ученые нашли большой термодинамический потенциал, плотность частиц конденсата и критическую температуру.
Кроме того, ученые обнаружили еще один фазовый переход, который сопровождает дальнейшее охлаждение газа. Для этого физики заметили, что двумерная сфера топологически эквивалентна двумерной плоскости — следовательно, в конденсате частиц с ненулевым целым спином могут возникать вихри и антивихри (иногда объединенные в «диполи»). Обобщая теорию Березинского — Костерлица — Таулесса, которая описывает такие топологические дефекты, ученые увидели еще одну критическую температуру, при которой бозе-конденсат превращается в сверхтекучую жидкость. В пределе больших констант связи эта температура совпадала с температурой бозе-конденсации, однако в промежуточной области оказывалась в несколько раз меньше.
Разумеется, в традиционных экспериментах проверить предсказания авторов не получится: под действием гравитации атомы падают на дно установки, и собрать их в сферически симметричный «пузырь» не получится. Впрочем, ученые не считают это проблемой. С одной стороны, исследователи уже научились получать бозе-конденсаты в условиях микрогравитации, при которых такой эксперимент вполне можно поставить. Например, в октябре прошлого года физики из Германии, США и Франции с помощью метеорологической ракеты MAIUS-1 получили бозе-конденсат атомов рубидия-87 при гравитации порядка 10−6g, а потом пронаблюдали за ним в течение 300 миллисекунд. С другой стороны, ловушки, которые могут «привязать» атомы к поверхности сферы, тоже уже есть. В частности, «ловушка-пузырь» (bubble trap), разработанная Оливером Зобаем (Oliver Zobay) и Барри Гарравеем (Barry Garraway), удерживает атомы в сферической оболочке толщиной порядка 0,1 микрометра и радиусом около 10 микрометров. Таким образом, предсказания теоретиков уже сейчас можно проверить на практике. Более того, авторы утверждают, что именно возможность такой проверки вдохновила их провести теоретические расчеты.
Дмитрий Трунин
Для этого физики косо сталкивали восемь плазменных струй
Британские и американские физики создали лабораторный аналог аккреционного диска, который возникает в космосе при падении газа на массивные объекты, например, черные дыры. В новом опыте, в отличие от предыдущих исследований, отсутствовали какие-либо стенки или ограничения для потоков — их закручивание происходило за счет нецентрального столкновения восьми плазменных струй. Плазменное кольцо продемонстрировало стабильность, что позволит в будущем исследовать роль магнитного поля в аккреции вещества. Исследование опубликовано в Physical Review Letters. Аккреционные потоки газа вокруг массивных тел встречаются во Вселенной довольно часто. Свет, испускаемый аккреционным диском, может свидетельствовать в том числе и о существовании черной дыры. Поведение газа, падающего на черную дыру, вызывает у исследователей множество вопросов, ответы на которые они добывают преимущественно теоретически. Лабораторные попытки понять физику аккреционного диска тоже существуют. Для этого физики создают потоки водно-глицериновых растворов или металлических расплавов в магнитном поле. Другой способ основан на подаче электрического тока на края холловской плазмы, удерживаемой постоянными магнитами. Недостатком всех этих методов остается наличие жестких границ, которые отсутствуют в космических процессах и искажают моделирование. Группа физиков под руководством Сергея Лебедева (Sergei Lebedev) из Имперского колледжа Лондона вместе с коллегами из США провели эксперимент, лишенный этого недостатка. Он заключался в косом сталкивании восьми плазменных струй, которые закручивались в кольцо. Их движение при этом напоминало движение вещества в аккреционном диске массивного тела. В эксперименте также образовывались характерные плазменные струи, перпендикулярные плоскости вращения. Установка физиков состояла из алюминиевых проволок толщиной 40 микрометров, расположенных в серединах ребер правильного восьмиугольника. Ученые пропускали через них импульсы большого тока (до 1,4 мегаампера на пике), что приводило к нагреву и абляции вещества. Магнитные поля формировали абляционные потоки и направляли их в середину установки, слегка отклоняя от центра. Столкновение потоков вещества формировало его в кольцо диаметром шесть миллиметров. Оно существовало не более 210 наносекунд, за время которого плазма делала от половины до двух оборотов. Физики следили за ее образованием и развитием в оптическом и экстремально-ультрафиолетовом диапазоне, что позволило исследовать распределение скоростей. Изображения показали, что плазменное кольцо стабильно в течение срока жизни, а само вращение происходит в квазикеплеровском режиме. Авторы также наблюдали плазменную струю, порожденную из вращающегося плазменного столба осевыми градиентами теплового и магнитного давления. Скорость вещества в ней составила 100±20 километров в секунду. Малый угол расходимости — 3±1 градус — свидетельствовал об отсутствии эффектов нестабильности. Струю также окружал плазменный ореол. В будущем авторы планируют продлить время жизни кольца за счет более долгих абляционных импульсов, для чего им потребуется использовать более толстые проволоки. Они убеждены, что замена алюминия на другие материалы позволит контролировать различные параметры магнитнодинамического потока. В будущем это позволит в лаборатории приблизиться к условиям, возникающим в астрофизических процессах, и понять роль нестабильности магнитных полей в аккреции вещества. Аккреционный диск — это не единственное явление, связанное с черными дырами, которое физики пытаются воспроизвести в лабораторных экспериментах. Ранее мы рассказывали, как течение воды в сливе раковины помогает изучать квазисвязанные состояния черных дыр, и как в конденсате Бозе — Эйнштейна подтвердили тепловой спектр излучения Хокинга.