Что такое сингулярность и зачем она растениям и животным
Принято считать, что в центре черной дыры находится сингулярность. За доказательство этого факта в прошлом году дали Нобелевскую премию по физике — что удивило некоторых ученых, потому что эмпирически его не проверить. Из-за этой принципиальной невозможности заглянуть за пределы горизонта событий вокруг сингулярности высвечивается ореол трансцендентного. Но понять, как устроены сингулярности, можно и не выходя из дома — достаточно взять в руки яблоко или открыть водопроводный кран.
Слово «сингулярность» в зависимости от того, кто его говорит, может обозначать довольно разные явления. Для футуролога сингулярность — момент, когда человек теряет контроль над технологическим прогрессом, а для климатолога — вообще локальное изменение погоды в определенные дни, не продиктованное сезонными изменениями (например, оттепель). В зависимости от контекста этот термин может означать любые резкие и исключительные переходы, развороты или зарождения новых явлений.
Так или иначе, все эти «сингулярности» порождены математикой, но чем дальше и дольше путешествовал термин, тем больше размывалась строгость его определения. У физиков и математиков «сингулярности», впрочем, своего значения не потеряли, хотя смысл у них может очень разным.
В русском математическом языке вместо термина «сингулярность» используют другое слово — «особенность». Это точка, в которой функция имеет разрыв или у нее нет однозначно определенной производной. Если эта функция описывает какую-то физическую величину, то в особой точке ее значение будет, например, бесконечным.
Пожалуй, самый известный пример физической сингулярности — черная дыра. В ней в бесконечность обращаются кривизна и плотность пространства-времени. Сложность с черной дырой в том, что находится она за пределами видимости, даже теоретическими. Если какая-то информация попала в черную дыру, то вернуться обратно из-за горизонта событий она уже не сможет. А тепловое излучение Хокинга, которое черная дыра испускает из-за квантовых эффектов, информации не несет. Поэтому взглянуть на сингулярность, удостовериться, что она действительно там есть, и увидеть, что она из себя представляет, невозможно.
Именно из-за невозможности наблюдения черных дыр многие ученые скептически восприняли присуждение Нобелевской премии по физике 2020 года Роджеру Пенроузу. Он доказал, что в черной дыре обязательно должна быть сингулярность, но проверить этот факт невозможно. Увидеть, что происходит с фотонами около черной дыры, — можно: фотография тени черной дыры стала одним из научных прорывов 2019 года. Но изображение этой области вокруг черной дыры, в которой из-за искривления траекторий фотонов и отсутствия стабильных орбит сильно снижается яркость свечения, ничего не говорит о том, как фотоны ведут себя за горизонтом событий.
Впрочем, столкнуться с сингулярностями можно и на Земле. А некоторые — даже подержать в руках. С точки зрения избыточной потенциальной энергии и механической устойчивости быть круглым (или хотя бы гладким) лучше, чем угловатым: на изломах концентрируется напряжение, поэтому там проще ломаться. Но в материальном мире сингулярности повсюду — в воде, траве, животных.
Почему так — не очень понятно. Одна из семи Задач тысячелетия — не просто поиск общего решения уравнений Навье–Стокса, описывающих механику вязких жидкостей, но и доказательство или опровержение гладкости их возможных частных решений. Математики ищут ответ на вопрос, может ли в гидродинамике естественным образом рождаться сингулярность или нет.
При этом самые наглядные примеры естественных сингулярностей связаны как раз с течением воды. Например, сингулярность возникает в тот момент, когда от поверхности воды отделяется капля или из трубки на дне заполненного сосуда вылетает пузырек газа. Если на этот процесс смотреть в замедленной съемке, то можно увидеть, как сначала между поверхностью и каплей образуется шейка, которая истончается и затем рвется. В момент разрыва на обеих его сторонах неизбежно возникают особенности.
Тогда же уравнение, которое описывало весь объем воды, должно расщепиться на два: для капли и для родившей его поверхности. При этом «новорожденные» уравнения в первое мгновение своего существования должны в тех же условиях давать то же решение, что и «материнское». Но при этом они содержат еще и сингулярности.
Еще один наглядный пример сингулярности в гидродинамике — сток воды. В зависимости от объема и вязкости жидкости и размера сливного отверстия, в такой системе можно увидеть два вида сингулярностей, одна из которых перетекает в другую. Первая возникает на верхней поверхности жидкости. Если жидкость достаточно вязкая, а отверстие — достаточно маленькое по сравнению с толщиной слоя, то в какой-то момент поверхность теряет свою гладкость. Вторая сингулярность появляется в центре сливного отверстия. Если жидкость не очень вязкая, а сток достаточно широкий, то в его центре скорость жидкости формально становится бесконечной. Похожая сингулярность возникает в центре вихревых потоков, например в торнадо или в кружке с чаем, в которой ложечкой размешивают сахар.
Переход от ламинарного течения к турбулентному — тоже, возможно, следствие сингулярности (это не точно, потому что хорошей теории для описания турбулентного течения до сих пор нет). В любом случае, если сингулярность там есть, то ее, как и той, что находится в центре черной дыры, не видно — она возникает на уровне решений уравнений. При устремлении числа Рейнольдса к бесконечности решения для ламинарных потоков должны смениться на решения совсем другого вида. И эта смена режима должна проходить через особенность.
Сингулярности в непрерывных средах — воплощенные решения дифференциальных уравнений в частных производных. Для воды это уравнения Навье–Стокса. Решая их, можно получить функции, в которых и на уровне математики возникают особенности.
У математиков для описания и исследования этих решений есть отдельная дисциплина — теория особенностей (или теория сингулярностей). В изначальном варианте, который предложил американский математик Хасслер Уитни, теория изучает гладкие отображения — например, проекции гладких поверхностей на плоскость. Уитни обнаружил, что на таких проекциях может быть два вида устойчивых особенностей: складки и сборки. Складка образуется при проекции замкнутого тела (например сферы) на плоскость, сборка — при проекции на плоскость «волнистой» поверхности.
Складка делит плоскость на две области: внутри у каждой точки на плоскости два прообраза на поверхности, снаружи — ни одного, на границе — один. В случае сборки проекция тоже делит плоскость на две области. На большей части каждая точка проекции соответствует одной точки поверхности, а на меньшей — трем. Две эти области разделяет полукубическая парабола, состоящей из двух симметричных ветвей, которые сходятся в точке возврата (она же острие, она же касп).
Все другие особенности (сингулярности) гладких отображений — сводятся малыми шевелениями поверхности к складкам и сборкам. Взаимной однозначности у этих отображений нет (то есть одной точке проекции может соответствовать несколько точек поверхности), но именно эти особенности — устойчивые и не разваливаются при небольших движениях поверхности. Все остальные особенности гладких отображений можно свести к этим двум. В итоге двумя гладкими — без особенностей — поверхностями порождаются кривые с особыми точками. Единственная точка, в которой эти кривые не гладкие, — это точка сингулярности. Движение по гладкой кривой не предвещает никаких сложностей. Сингулярность наступает внезапно — а вместе с ней появляются сложности.
Здесь сходятся два решения с разными производными и функция становится нйеодмиефуфреирценнецриерфуфеимдоейн
нйеодмиефуфреирценнецриерфуфеимдоейн ястивонатс яицкнуф и имындовзиорп имынзар с яинешер авд ястядохс ьседЗ
На другой стороне сингулярности — снова гладкая функция. Но уже не совсем такая, как была.
Как эта сингулярная математика просачивается в реальный мир, легче всего увидеть даже не в гидродинамических явлениях, а в оптических. Например, при распространении волнового фронта после рассеяния света на стакане с водой. Для описания точек, где интенсивность света максимальна, используют каустики — особые линии, огибающие для всех лучей, которые расходятся от стакана.
Каустики могут быть разной формы, но практически все содержат сингулярности. Нефроида, кардиоида, циклоида — на всех этих кривых есть особые точки. Уравнения для каждой из них свои, но у сингулярностей они очень близки к полукубической параболе. При этом те же уравнения подходят не только для оптических, но и других естественных сингулярностей, поэтому большинство статических особых точек в естественной среде можно точно описать с помощью теории особенностей (или теории сингулярностей).
Рассматривая, как вода утекает в сливное отверстие или как стакан с водой рассеивает свет, можно лучше понять, как устроена черная дыра, чем просто смотря на графики функций. Но помимо них, в природе есть множество тел с устойчивыми особыми точками — их можно не только рассмотреть, но и пощупать. И описать с помощью теории особенностей, решив соответствующие дифференциальные уравнения.
Например, складки или морщины на теле — результат того, что разные ткани растут (или наоборот — уменьшаются в объеме) с разной скоростью. Когда механическое внутреннее напряжение в ткани становится слишком большим, то поверхность складывается — так образуется морщина. Иногда с ними оказывается даже удобнее, и такие нарушения устойчивости при развитии закрепляются в ходе эволюции — так организмы начали выращивать на себе сингулярности. Извилины на головном мозге — пример таких преднамеренных сингулярностей. У всех людей главные извилины расположены одинаково, и процесс их образования управляется физическими механизмами, хотя и кажется, что нарушение устойчивости должно быть случайным процессом.
Чтобы разобраться, почему живым организмам удается управлять этим сложным и сильно нелинейным процессом, у математиков есть еще одна теория, тоже построенная вокруг сингулярностей. Для описания динамических процессов ученые используют теорию бифуркаций. Те же самые складки и сборки в этой теории описывают особые точки, линии или поверхности, на которых система из-за плавного изменения одной из характеристик системы резко меняет свое состояние. В случае с извилинами — из-за плавного увеличения внутреннего механического напряжения растущая кора из гладкого состояния резко переходит к морщинистому. В точке бифуркации (это сингулярность) оба состояния равновероятны, но после ее прохождении выбор в пользу складок уже сделан.
В таких системах сингулярность — результат роста в ограниченном пространстве гиперупругого неогуковского тела, у которых напряжение и деформация связаны нелинейно. Морщина появляется вынужденно из-за избыточной деформации (это происходит примерно при 45-процентной деформации), но после прохождения точки бифуркации она становится устойчивой. Например, если вынуть мозг из черепа, извилины не распрямятся.
То, что такая конфигурация двумерных сингулярностей действительно устойчива, воспроизводима и определяется геометрическими ограничениями, ученые проверяют не только общими математическими уравнениями, но и в реальных физических экспериментах, на реальных моделях из полидиметилсилоксана — эластомера с нелинейными механическими свойствами.
При этом из-за физических эффектов воспроизводимость системы сингулярных складок выполняется не только для больших деформаций, когда точка бифуркации уже пройдена, но и для маленьких. Например, недавно физики установили, что из-за адгезии и пининга краевой линии после распрямления поверхности на ней остаются «шрамы». Из-за чего процесс сгибания–разгибания материала становится асимметричным, а место складки — буквально впечатывается в его память.
Сингулярности в извилинах и морщинах двумерны. В особой точке в одном измерении кривизна действительно бесконечная, но в другом — наоборот, нулевая. Значит ли это, что в трехмерном мире эти сингулярности будто бы не совсем полноценны? Нарисованные на бумаге графики парабол с особенностями и каустики, которые видны на плоских проекциях, — примеры сингулярностей на одномерных линиях. Извилины головного мозга, морщины или водопад на широкой реке — сингулярности в двумерных системах. И те, и другие примеры точно помогают чуть лучше представить, что происходит в черной дыре — сингулярности в четырехмерном пространстве-времени. Но любая трехмерная особенность, особенно если ее можно подержать в руках, должна помочь лучше.
Трехмерные сингулярности растут практически на каждом дереве. Например в той точке, за которую яблоко подвешено к ветке, возникают осесимметричные особенности, очень похожие на полукубические параболы. С точки зрения геометрии это почти полные аналоги гидродинамических сингулярностей — с отрывом капли или стеканием жидкости в круглое отверстие. Выдавливая из себя яблоко через трубку плодоножки, ветка яблони превращает точку, на которой висит плод, в своеобразный сингулярный слив.
Физики из Гарвардского университета внимательно изучили, как эта сингулярность меняется во время роста яблока и почему она получается именно такой формы. Оказалось, что поверхность яблока, вздувшаяся вблизи плодоножки, действительно хорошо описывается теорией сингулярности, а дуги его поверхности вблизи особой точки описываются параболой.
Ученые выяснили, что если рассматривать рост яблока как равномерное движение его фронта во всех направлениях, то когда в одном конкретном направлении этому росту препятствует какой-то ингибитор, в этой точке возникает сингулярность. И форма яблока на каждой стадии его развития оказывается не сферой, а задается уравнением эйконала. Это уравнение из оптики, которое описывает распространение световых лучей при заданных граничных условиях, связывая фазу светового поля с оптической длиной пути. Для яблока в первые моменты после начала роста решение этого уравнения будет гладким даже при наличии точки ингибирования, но в определенный момент в нем действительно появляется касп (он же острие, он же точка возврата).
И это решение универсально — оно чисто геометрическое и не зависит от химического состава, типа клеток или физической природы явления. Согласно ему будет меняться форма и яблока, и чего угодно, что растет как яблоко.
Так же, как и извилины головного мозга, касп в яблоке образуется по законам механики. Поэтому его можно точно так же проверить с помощью моделирования и на реальной модели.
Эти эксперименты уже провели: и они не только подтверждают механизм возникновения сингулярности на яблоке, но и позволяют изучить более тонкие эффекты. Так, если яблоко висит на слишком толстой плодоножке, то сингулярность перестает быть осесимметричной, и на ее берегах возникают сингулярности второго порядка — дополнительные складки, которые делят плод на хорошо заметные доли. Чем толще плодоножка, тем больше долей будет у сингулярности. Такой же эффект можно увидеть и, например, на помидорах.
Здесь математика сталкивается с чувственным опытом. Рассматривая яблоко, мы не видим бесконечности. Математические бездны не умещаются в наблюдаемый мир.
Но математика абстрактна. Сама по себе она не отвечает, почему при решении уравнений, в которых физики не сомневаются, возникает бесконечность, а максимальная кривизна оказывается выгоднее гладкости. В дифференциальных уравнениях, которые описывают физический мир, решения с особыми точками возникают сами собой. Это происходит, если процесс, который эти уравнения пытаются описать, оказывается для них слишком тонким. Тогда задача становится мультимасштабной и сильно нелинейной, и модель перестает справляться с ней до конца. Извне решение выглядит правильным, но как только мы попадаем в особую точку, выясняется, что никакой физической сингулярности здесь нет, это просто уравнения дают сбой. Бесконечность — артефакт модели, она означает переход на новый уровень, где работают другие формальные законы.
Если мы посмотрим на эту же точку иначе — например, возьмем квантовую физику вместо классической или дискретную модель вместо континуальной, — то сингулярность перестанет быть бесконечным падением и станет чем-то конечным и доступным для понимания.
Поэтому в каждом отдельном случае: с текущей водой, растущим яблоком или бесконечным сжатием материи в черной дыре — надо разобраться, какое именно допущение перестало соблюдаться в особой точке. И как надо поменять свой взгляд на проблему, чтобы избавиться от сингулярности.
Взгляд в черную дыру для нас чем-то похож на попытку увидеть с поверхности яблока, куда упирается плодоножка. Подойдешь слишком близко — и бездна исчезнет. А найти подходящую точку зрения, не поломав при этом привычную картину мира, — (пока) невозможно.
Александр Дубов
Для доказательства апериодичности мозаики ученые показали иерархичность ее структуры
Математики нашли невыпуклый многоугольник, которым можно замостить плоскость только апериодически. Чтобы доказать принципиальную апериодичность паркета из таких элементов, ученые предложили свой собственный метод, в котором обосновывают геометрическую несоизмеримость иерархической структуры образующейся мозаики. По словам ученых, на основе найденного 13-угольника можно построить целый класс многоугольников с подобными свойствами. Препринт с результатами исследования опубликован на arXiv.org.