Две группы физиков смоделировали неабелевы энионы на квантовых компьютерах

Один компьютер — на сверхпроводящих контурах, другой — на ионах в ловушках

Сразу две группы физиков сообщили о результатах по симуляции неабелевых энионов на квантовом процессоре. Группа Google Quantum AI использовала для этого сверхпроводящий квантовый компьютер — их результаты опубликованы в журнале Nature. Группа Quantinuum воспользовалась квантовым компьютером на ионах в ловушках. Ознакомиться с их исследованием можно по препринту.

Энионами называют класс частиц и квазичастиц, которые занимают промежуточное положение между бозонами и фермионами относительно того, как меняется волновая функция после перестановки двух частиц из пары. Их существование возможно только в двумерном пространстве. Интерес к энионам обусловлен тем, что, переставляя их, можно проводить топологически защищенные квантовые вычисления. Подробнее об этом читайте в материалах «Наплели моду» и «Спиновая жидкость».

Важное условие для этого — неабелевость энионов. Так называют ситуацию, при котором операторы перестановки не коммутируют. Другими словами, важны не только сами частицы, но и последовательности их перестановок. Обычно это представляют в виде переплетения мировых линий частиц.

Поиск неабелевых энионов (или неабелеонов) велся по большей части в твердотельных платформах. Физики пытались найти квазичастицы с такими свойствами. Другой подход основан на симуляции неабелеонной волновой функции с помощью ресурсов квантового процессора. Именно это удалось недавно сделать двум группам: команде Google Quantum AI, работающей на сверхпроводящем квантовой компьютере, и команде Quantinuum, в распоряжении которой есть квантовый компьютер на ионах.

Работа физиков из Google во многом пересекается с исследованием, в котором они доказали выгоду от масштабирования коррекции ошибок с помощью поверхностного кода (мы рассказывали об этом недавно). Поверхностным кодом называется объединение нескольких физических кубитов в один логический. Такой подход позволяет исправлять потерю квантовой информации, вызванную декогеренцией.

В новом исследовании роль неабелевых энионов играли определенные дефекты в поверхностном коде, представленном в виде квадратного графа. Дефекты имели топологический характер, а потому демонстрировали нужные свойства. Физики показали, что, перемещая дефекты по графу, можно проводить плетение и кодировать таким способом квантовую информацию.

Процессор позволил создать восемь неабелионов, которые авторы использовали, чтобы закодировать три логических кубита и перевести их в состояние Гринбергера — Хорна — Цайлингера (GHZ состояние). Таким образом физики показали, что логические кубиты на основе неабелевых энионов в сверхпроводящем квантовом процессоре потенциально пригодны для квантовых вычислений.

Физики из Quantinuum работали на квантовом компьютере H2, который состоит из 33 ионов иттербия, удерживаемых в чипе электронными ловушками. Стартовой точкой в этом исследовании стало запутывание 27 из них в состояние, которое можно было бы описать с помощью решетки кагомэ с периодическими граничными условиями. Такую решетку проще всего представить свернутой в тор.

Полученная поверхность представляла собой виртуальное двумерное пространство, в котором могли существовать неабелевы энионы. Физики возбуждали их парами, применяя определенные логические операторы к запутанному состоянию. Они убедились, что движение возбуждений по решетке имеет неабелев характер и допускает плетение. Таким путем они создали из мировых линий трех неабелеонов топологические кольца Борромео.

Манипуляции с топологией привлекают большое внимание ученых. Эти исследования были удостоены Нобелевской премии по физике в 2016 году. Подробнее о том, за что ее вручили, мы рассказывали в материале «Топологически защищен».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Наплели моду

Что не так с поисками майорановских фермионов и при чем тут Microsoft