Сбер испытал беспилотные автомобили дорогами Санкт-Петербурга

Компания «СберАвтоТех» провела испытания беспилотных автомобилей в Санкт-Петербурге, ранее компания испытывала их лишь в Москве и области. Беспилотники с водителем-испытателем за рулем перевозили пассажиров по Крестовскому острову, в заездах участвовало как минимум две машины, следует из материалов, которые обнаружил N + 1.

Созданием беспилотных автомобилей в России занимаются несколько компаний, которые различаются как масштабом программы разработки, так и публичностью. Наиболее масштабная программа испытаний у Яндекса: компания запустила уже два публичных сервиса такси в Сколково и Иннополисе, готовится к запуску в Москве, также она испытывала беспилотники в Израиле и США, а суммарно машины Яндекса (которых сейчас около 170) проехали более 20 миллионов километров. Проекты с единичными автомобилями также есть у «StarLine» и «КАМАЗ», кроме того, есть проекты, создаваемые студентами, например, в МАДИ, переехавшие из России, как «ЭвоКарго», или закрывшиеся, как Ralient.

Также свой проект беспилотных автомобилей есть у Сбера. В 2020 году компания начала испытательные заезды беспилотников на базе Kia Ceed SW в Москве, а в апреле этого года рассказала, что возит своих сотрудников на беспилотных автомобилях на востоке города. Тогда же стало известно, что еще с осени 2021 года беспилотники компании возят людей на территории «СберУниверситета» в Подмосковье. Теперь N + 1 выяснил, что компания недавно провела испытания беспилотников на дорогах Санкт-Петербурга.

В ролике, который N + 1 обнаружил на сайте «СберАвтоТеха», можно увидеть, что как минимум два автомобиля компания участвовали в заездах на Крестовском острове. Во время заездов пассажиры садились в беспилотники неподалеку от стадиона «Газпром Арена», а затем проезжали мимо метро «Крестовский остров». Этот же маршрут и точку посадки можно увидеть на карте, размещенной на сайте:

Испытания проводились не раньше конца апреля: в середине ролика можно увидеть электросамокаты Яндекса, которые появились в городе именно тогда.

От редактора

Компания публично не рассказывала о размере флота беспилотных машин, но по номерам 40 и 42 на автомобилях из ролика можно предположить, что у Сбера есть уже как минимум несколько десятков беспилотников. N + 1 направил запрос в «СберАвтоТех», но не получил ответа к моменту публикации заметки. При этом вскоре после публикации ролик и изображение с маршрутом исчезли с сайта компании.

Развитие беспилотных автомобилей в России происходит не в техническом направлении, но и в юридическом. В марте в стране вступил в силу экспериментальный правовой режим, разрешающий компаниям в отдельных случаях ездить без водителя в салоне (но под присмотром удаленного оператора), а также перевозить пассажиров и брать за это деньги.

Григорий Копиев

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Нейросеть научилась понимать тексты из даркнета

Теперь она может определять киберугрозы

Исследователи из Южной Кореи обучили языковую модель DarkBERT на текстах из даркнета. Люди общаются в даркнете иначе, чем в обычном интернете, в том числе используют свой сленг. Модель изучила этот язык, и теперь ее можно применять в задачах кибербезопасности. Препринт доступен на arXiv.org. Языковые модели сегодня применяют для изучения разных текстов. Это нейросети, которые обучились на большом количестве данных и хорошо выполняют задачи, связанные с пониманием речи. Популярные языковые модели основаны на архитектуре Transformer, которую придумали инженеры из Google — такие модели умеют фокусировать внимание на важных частях предложения. Языковые модели лучше всего понимают то, что похоже на примеры из обучающей выборки. Обычно они учатся на больших объемах текстов из интернета, поэтому понимают много чего: литературный язык, сообщения из социальных сетей, научно-популярные статьи. Но есть тексты, которые не попадают в обучающую выборку, в том числе тексты из даркнета. У них есть свои лингвистические особенности: словарный запас, распределение частей речи и даже синтаксис. Обычные языковые модели это не учитывают, потому что во время обучения не видели таких текстов. Выход есть — обучить языковую модель на материалах из даркнета. Даркнет — это часть интернета, которую не найти в обычных поисковиках вроде Яндекса или Гугла. Туда нельзя попасть через обычный браузер. Есть разные сервисы для входа в даркнет, авторы исследования использовали Tor. Люди в даркнете общаются анонимно, и их сложно отследить. Поэтому даркнет стал платформой для всякого незаконного, от утечек данных до торговли запрещенными веществами. Специалисты по кибербезопасности постоянно ищут способы мониторить и изучать тексты в даркнете. Группа ученых из Южной Кореи под руководством Сун Вон Шина (Seungwon Shin) из Корейского института передовых технологий собрала корпус текстов из даркнета и обучила на нем языковую модель DarkBERT. Сначала авторы составили списки сайтов с помощью инструмента поиска по даркнету. Затем они скачали 6 миллионов веб-страниц и превратили их в тексты. Для обучения использовали модель RoBERTa, основанную на архитектуре Transformer. После обучения на текстах даркнета получилась готовая модель DarkBERT. Ее качество сравнивали со стандартными моделями RoBERTa и BERT, которые обучались на обычных текстах. Тестировали модели на разных сценариях киберугроз. Например, иногда злоумышленники похищают конфиденциальные данные с сайтов и вымогают у их владельцев деньги. Если деньги не поступают, злоумышленники публикуют украденные данные. Нейросети получали текст сайта и решали задачу бинарной классификации: определить, размещают ли на нем утекшие данные. DarkBERT справился с этой задачей намного лучше (точность 84 процента у DarkBERT против 70 процентов у BERT и 44 процента у RoBERTa). Еще один пласт нелегальной активности в даркнете — это продажа запрещенных веществ. Авторы проверили, насколько хорошо разные модели понимают сообщения с форумов даркнета: нейросети выделяли ключевые слова в сообщениях о запрещенных веществах. Такие ключевые слова могут пригодиться сотрудникам правоохранительных органов, чтобы быстро искать сообщения о продаже веществ и определять продавцов. Эту задачу тестировали на DarkBERT и на похожей модели BERT, дообученной на тематическом сабреддите. Здесь DarkBERT снова обошел конкурента (точность определения топ-10 ключевых слов 60 процентов у DarkBERT против 40 процентов у BERT). В целом результаты показывают, что предобученная на текстах из даркнета нейросеть DarkBERT справляется с задачами кибербезопасности лучше, чем другие модели. Ее можно использовать, чтобы мониторить нелегальную активность в даркнете, вычислять преступников и предотвращать утечки данных. Но у DarkBERT есть свои ограничения. Во-первых, она умеет работать только с англоязычными текстами. Во-вторых, обучающую выборку из даркнета собирать сложно, потому что сайты непросто найти и превратить в тексты. А чем больше подходящих текстов, тем выше эффективность модели. Другие языковые модели тоже продолжают развиваться. Например, инженеры из Яндекса натренировали нейросеть на русскоязычных текстах и встроили ее в Алису.