Инженеры научной лаборатории ВМС США продемонстрировали беспроводную передачу энергии мощностью 1,6 киловатт на расстояние в километр с помощью микроволнового излучения. В будущем технологию можно будет использовать для передачи энергии из космоса на Землю, отмечается в пресс-релизе лаборатории.
Американские инженеры в 1970-х годах активно работали над технологиями, необходимыми для беспроводной передачи энергии из космоса. Предполагалось, что это позволит построить на орбите солнечную станцию, которая сможет эффективно вырабатывать энергию и передавать ее на Землю. В 1975 году NASA провело самую успешную демонстрацию такого подхода на сегодняшний день: они сумели наладить беспроводную передачу на расстояние чуть более полутора километров мощностью более 30 киловатт. И хотя передача оказалась достаточно эффективной (более 82 процентов), для этого пришлось использовать принимающую антенну площадью 24 квадратных метра, а генерировала пучок радиоволн зеркальная антенна диаметром 26 метров. Таким образом, для передачи серьезного количества энергии на расстояние в сотни километров требовались бы намного большие антенны.
В последние годы американские инженеры, в основном военные, вернулись к этому направлению и стали проводить тесты усовершенствованных антенн. Так, в 2018 году ВВС США и Northrop Grumman начали разработку технологий для спутника, который мог бы дистанционно снабжать энергией удаленные военные базы. В прошлом году инженеры этого проекта показали прототип солнечной панели с интегрированной передающей антенной.
Разработкой технологий по беспроводной передаче энергии также занимается научная лаборатория ВМС США. Она рассказала об испытаниях излучающей и принимающей антенн. В качестве передатчика инженеры использовали обычную зеркальную антенну диаметром в несколько метров. Она генерирует узкий пучок электромагнитного излучения с частотой 10 гигагерц. Принимает радиоволны квадратная антенна из множества приемников, подсоединенных к выпрямляющим диодам для генерации постоянного тока. Эксперименты показали, что система способна передавать энергию на расстояние одного километра с пиковой мощностью в 1,6 киловатт.
В другом испытании инженерам удалось добиться меньшей пиковой мощности, но более стабильной передачи, которая позволила запитать большой массив светодиодов. При этом величина мощности, развитая в этом тесте, неизвестна. Инженеры отмечают, что их система работает в допустимом мировыми регуляторе диапазоне мощности, признанном безопасным для людей и животных.
Пока самые мощные прототипы радиочастотных систем передачи энергии работают на Земле, но некоторые уже тестируются в космосе. Известно, что в текущем полете беспилотного космоплана X-37B, начавшемся в мае 2020 года, испытываются некоторые компоненты такой системы, однако из-за секретности проекта подробности об этом неизвестны. Также существуют лазерные системы передачи энергии, но их мощность, как правило, составляет сотни ватт.
Григорий Копиев
Австралийские ученые выяснили, от чего зависит цена водородного топлива, получаемого с помощью солнечных батарей. Они выделили основные факторы, влияющие на цену такого водорода в разных климатических районах, и предложили, как можно сделать его дешевле. Прогноз получился оптимистичным: вполне вероятно, что уже к 2030 году солнечный водород сравняется в цене с водородом, который получают традиционным способом из метана. Результаты исследования опубликованы в журнале Cell Reports Physical Science. Водород — практически идеальное топливо: он легкий, его удобно хранить и перевозить, а при сгорании выделяется безвредный водяной пар. Одна из перспективных областей современной энергетики — получение водорода с помощью солнечных батарей. В таких устройствах энергия солнечного излучения превращается в электроэнергию, которая сразу же тратится на выделения водорода из воды с помощью электролиза. Получается вдвойне выгодный процесс — можно не только получить удобное и экологичное топливо, но и запасти впрок энергию нестабильных солнечных генераторов. Однако, пока что у солнечного водорода есть существенный недостаток — высокая цена. К стоимости солнечного элемента в таком случае нужно прибавить стоимость катализаторов для электролиза, которые зачастую изготавливают из металлов платиновой группы. Эффективность таких устройств тоже пока что ниже, чем у стандартных солнечных элементов, ведь энергия преобразуется дважды, на каждом этапе часть ее теряется. В настоящее время энергия, которую можно получить от сжигания полученного водорода, у лучших преобразователей составляет только 17 процентов от поглощенной ими солнечной энергии. Все это делает солнечный водород дорогим. Поэтому, хотя водородное топливо становится все более популярным (уже используется около 80 миллионов тонн водорода в год), основным его источником все еще остается дешевый реформинг метана. Австралийские ученые под руководством Нэйтана Чана (Nathan L.Chang) из Университета Нового Южного Уэльса попробовали выяснить, как сделать экологичный водород дешевле В своем анализе они сосредоточились на так называемых независимых электролизерах Такие устройства не подключены к сети и питаются только от солнечных батарей. По сравнению с гибридными электролизерами, которые могут питаться и от сети, и от солнечных батарей, такие устройства работают менее стабильно и имеют ограниченную емкость. Но есть у независимых электролизеров и сильные стороны — такие устройства можно использовать для получения водорода в самых отдаленных районах, а отказ от проводов для соединения с сетью, делает их немного дешевле. Чтобы оценить вклад разных факторов, влияющих на работу независимого солнечного электролизера — стоимости материалов, эффективности, размера устройств, погодных условий и даже стоимости воды, которая нужна для электролиза, — ученые использовали метод Монте-Карло. Всего было сделано 20 тысяч итераций для разных климатических условий, помимо Австралии ученые рассмотрели районы Испании, Японии и Чили. Чан и его коллеги исходили из предположения, что для выхода на рынок экологичному водороду необходимо преодолеть ценовой порог в 2,5 доллара США за килограмм. На сегодняшний день, согласно их расчетам, средняя цена водорода, полученного в Австралии, все еще выше — от 3,4 до 3,7 долларов за килограмм. Вполне ожидаемо, больше всего цены на водород зависят от стоимости устройства. При этом из двух составных частей электролизера — солнечного элемента и катализатора — больший вклад в финальную цену вносит стоимость солнечного элемента. Кроме того, ученые отмечают, что стоимость водорода зависит от погодных условий — в первую очередь от яркости солнца и количества солнечных дней. Если в солнечном Порт-Хедленде в Австралии стоимость водорода составляет около 3,38 долларов за килограмм, то в Фукусиме в Японии при прочих равных условиях получится 4,72 доллара за килограмм. Поэтому авторы работы считают, что Японию можно будет рассматривать в качестве потенциального покупателя для австралийского водорода. Одним из самых эффективных способов для снижения стоимости водорода авторы называют переход на более масштабные и мощные преобразователи. Их расчеты показывают, что увеличение мощности устройства в десять раз уже сейчас может снизить цену на водород на 0,3 доллара за килограмм. Появление более эффективных солнечных батарей и катализаторов, разумеется, тоже будет каждый год делать водород из электролизеров немного дешевле. Поэтому стоимость полученного в Австралии солнечного водорода будет непрерывно снижаться, и уже к 2030 году может преодолеть порог в 2,2 доллара США за килограмм. Впрочем, задачу разработки одновременно дешевого и эффективного электролизера на солнечных батареях еще предстоит решить. Сейчас над созданием таких устройств работает множество научных групп по всему миру. Несколько месяцев назад американские и китайские химики собрали электролизер без использования дорогостоящих материалов — соединили перовскитный солнечный элемент с электрокатализатором из наностержней оксида кобальта. Эффективность устройства оказалась не очень высокой — 6,7 процентов — но авторы работы считают, что в дальнейшем ее можно будет повысить.Наталия Самойлова