Инженеры из США, Австралии, Великобритании и Франции разработали метод поиска метеоритов по вспышкам перед их падением, основанный на использовании дрона с камерой. С помощью алгоритма они вычислили район вероятного падения фрагментов метеорита в американском штате Невада, а дрон вылетел на это место и сделал множество детализированных снимков, на которых затем нейросеть нашла похожие наиболее похожие на метеориты объекты. Статья опубликована в журнале Meteoritics & Planetary Science, а ее препринт доступен на arXiv.org.
Ежедневно в атмосферу Земли входят тысячи метеорных тел. Подавляющее большинство из них сгорает над океанами и малонаселенными участками суши, а также днем, когда вспышки от них почти незаметны. Более того, лишь небольшая часть из метеорных тел, сгорающих в атмосфере, сгорает не полностью и падает на поверхность Земли, как правило, они производят вспышки звездной величины −8 и ярче. Потенциально по съемке падающего метеорита можно рассчитать траекторию его полета и примерный район падения его обломков. Этим занимаются профессинальные и любительские сети поиска метеоритов, состоящие из камер в разных частях Земли. Но фактически лишь около трех десятков метеоритов удалось найти таким способом. Отчасти это связано с тем, что такие поиски трудозатратны — районы поисков составляют десятки квадратных километров и в итоге часто они не дают результата. Но удавшиеся поиски представляют собой большой интерес ученых, исследующих ранние этапы образования Солнечной системы, потому что найденный метеорит можно сопоставить с траекторией его подлета к Земле, а по ней можно вычислить из какого семейства астероидов он был образован и тем самым удаленно исследовать его химический состав.
Группа инженеров под руководством Джима Альберса (Jim Albers) из Института SETI и Исследовательского центра Эймса в составе NASA решили упростить и удешевить поиск метеоритов по вспышкам от их падения и разработали для этого систему на основе дрона. Они использовали квадрокоптер 3DR Solo, который оборудовали лазерным высотомером, камерой GoPro, полетным контроллером PixHawk GreenCube и программным обеспечением Arducopter. Инженеры написали программу, которая разбивает район поиска на сетку мест, в которых дрон должен сделать кадр. Размер сетки подбирается в соответствии с высотой съемки, которую авторы варьировали от двух до шести метров. А поскольку дрон оснащен высотомером, он поддерживает заданную высоту, независимо от рельефа местности.
После облета местности дрон возвращается и с него выгружают данные для анализа. Для этого разработчики использовали нейросеть RetinaNet. Они взяли сеть, предобученную на датасете ImageNet и хорошо обнаруживащую объекты, и дообучили ее на собственном датасете. Для этого они использовали восемь фрагментов метеорита Мбале, упавшего в Уганде в 1992 году. Они клали фрагменты в разной местности и снимали их при помощи камеры с рук и при помощи дрона с воздуха. Также они добавили в датасет фотографии метеоритов из интернета. В результате получился датасет из 762 снимков, которые дополнительно отразили по вертикали и горизонтали, чтобы получить 2448 кадров, на которых авторы обучили нейросеть искать объекты-кандидаты.
Авторы проверили метод на падении метеорита в американском штате Невада 14 июля 2019 года. Его отследили станции поиска метеоритов NASA. Их расчеты показывают, что масса, которая могла долететь до земли, составила 35,3 ± 3,7 килограмм. Инженеры приняли плотность метеорита за 3,2 грамм на кубический сантиметр и с помощью модели ветра рассчитали район падения, наиболее вероятные точки (небольшие области) и примерное распределение массы возможных фрагментов по ним. Они выбрали две точки, в которых модель предсказывала возможность наличия фрагментов с массой около 10 и 100 грамм соответственно. В них они отправили дрон, причем в одной из точек они раскидали все восемь метеоритов из своей коллекции, чтобы проверить их распознавание на новой местности.
В результате они убедились, что алгоритм распознал все восемь метеоритов, а также отобрали три вероятных объекта-кандидата и отправились на их поиски, используя геометки снимков. Прибыв на место они обнаружили, что один из объектов — это темная щетка, дающая темную тень, а два остальных — камни, которые действительно были весьма похожи на метеориты, но не являлись ими. Авторы работы отметили, что хотя они не нашли метеориты и их система нуждается в доработке, в будущем метод может помочь в поиске метеоритов и ускорить его по сравнению с полностью ручными поисками.
Дроны благодаря их небольшой стоимости используют для поиска самых разных объектов — от потерявшихся людей и акул, до советских мин и борщевика.
Григорий Копиев
Он выдерживает температуру в 200 градусов Цельсия на протяжении 10 минут
Инженеры разработали термоустойчивый квадрокоптер FireDrone, он способен выдержать температуру в 200 градусов Цельсия в течение десяти минут. Это стало возможно благодаря тепловой защите на основе аэрогеля из полиимида, в которую заключены все внутренние компоненты дрона, включая электромоторы. Прототип оборудован инфракрасной камерой и термодатчиками, отслеживающими внутреннюю и внешнюю температуры. Благодаря устойчивости к высоким температурам дрон может пригодиться пожарным службам для разведки во время пожаров. Статья опубликована в журнале Advanced Intelligent Systems. Во время тушения пожаров пожарные службы отправляют на место происшествия разведывательные отряды, чтобы оценить ситуацию. Это создает риск для жизни и здоровья сотрудников спасательных служб, поэтому инженеры ищут возможность использовать для этой цели дроны, которые можно было бы отправить к источнику опасности вместо людей. С помощью беспилотников можно предварительно обследовать место происшествия и определить положение источников опасности, составить план местности и попытаться найти выживших. Однако для того, чтобы работать в непосредственной близости от источника высокой температуры, дрон должен обладать термозащитой. Инженеры под руководством Мирко Ковача (Mirko Kovač) из Имперского колледжа Лондона разработали прототип квадрокоптера FireDrone с термозащитой на основе армированного стеклотканью полиимидного аэрогеля — легкого пористого геля, который состоит в основном из воздушных полостей в полиимидной матрице с добавлением стекловолокна и силикатного аэрогеля. Благодаря этой защите дрон способен выдерживать температуру до 200 градусов Цельсия на протяжении десяти минут, при этом температура внутри корпуса не превышает 40 градусов. Помимо обычной RGB-камеры, дрон оборудован также камерой, снимающей в инфракрасном диапазоне для обнаружения источников высокой температуры, в условиях сильного задымления. Бортовая электроника один раз в секунду измеряет температуру снаружи и внутри термозащитного кожуха. Внутри дрона есть система охлаждения, которая построена на использовании эффекта понижения температуры при испарении сжиженного углекислого газа, который находится в картридже. При излишнем нагреве происходит открытие клапана и небольшие трубки распределяют газ для охлаждения внутренних компонентов. Термозащита дрона построена из плоских элементов толщиной 15 миллиметров, которые крепятся к раме из полиамида, образуя ромбокубооктаэдр. Корпус такой формы проще в изготовлении, чем корпус с изогнутыми элементами, при этом он имеет достаточный внутренний объем. Для отражения инфракрасного излучения от источников тепла снаружи дрон покрыт алюминиевой фольгой. Двигатели находятся в центральной части дрона, их вращение передается пропеллерам с помощью трансмиссии. Термозащиту разработчики испытали в тепловой камере, а также в тестовых полетах вблизи источников открытого пламени. Эти эксперименты подтвердили, что за счет тепловой изоляции с помощью аэрогеля и использования системы охлаждения удается значительно замедлить рост внутренней температуры. Кратковременно дрон способен выдержать температуру даже больше 1000 градусов, однако при этом начинают происходить структурные изменения корпуса за счет деформации аэрогеля. Для чистого полиимидного аэрогеля такая деформация наблюдается уже выше 200 градусов, но дополнительные армирующие добавки позволяют снизить этот эффект. Благодаря низкой теплопроводности дрон может использоваться также и при низких температурах. И если время работы дрона в условиях высокой температуры определяется размером резервуара с углекислым газом для системы охлаждения, то в случае полетов в условиях холода, внутренняя температура поддерживается на достаточном уровне за счет тепловыделения внутренних компонентов дрона. https://www.youtube.com/watch?v=pNp2T9Sx7xY Из множества существующих дронов, предназначенных для тушения пожаров с помощью воды или огнетушителей выделяется гексакоптер NIMBUS, разработанный специалистами из Университета Небраски-Линкольна. Вместо тушения уже разгоревшегося огня, он предназначен для создания новых контролируемых поджогов — одного из методов борьбы с пожарами. Для этого он оборудован системой сброса горящих шаров.