Полиэтилен превратили в авиационное топливо за час

Chuhua Jia et. al. / Chem Catalysis

Американские химики переработали полиэтилен высокой плотности в реактивное топливо с помощью реакции гидрогенолиза на рутениевом катализаторе. Реакция прошла в мягких условиях с высоким выходом за один час. В статье, опубликованной в журнале Chem Catalysis, ученые рассказали, что в предыдущей работе похожим способом удалось превратить полиэтилен в топливо за 16 часов. 

Полиэтилен — самый популярный пластик во всем мире и вопрос его переработки стоит остро. Молекулы полиэтилена представляют собой длинные углеводородные цепочки —(CH2—CH2)n—, а топливо и смазочные материалы — смесь углеводородов, молекулы которых, в свою очередь, состоят из 722 атомов углерода. Поэтому создав способ эффективно деполимеризовать полиэтилен, химики получат возможность перерабатывать его в топливо.

Однако высокое потребление энергии делает переработку полимера сложной задачей. Например, для каталитического пиролиза полиэтилена нужна температура более 300 градусов по Цельсию, что экономически нецелесообразно. Также помимо линейных алканов, при пиролизе образуются ароматические углеводороды, легко превращающиеся в кокс, который может вызвать дезактивацию катализатора. Следовательно, необходима разработка каталитических процессов, которые могли бы превращать полиэтилен в топливо в более мягких условиях реакции.

В прошлом году химики из США разработали метод превращения полиэтилена путем его гидрогенолиза (расщепления связи С–С под действием водорода) в дизельное топливо и мазут с применением мезопористого катализатора с ядром из платины и оболочки из оксида кремния. Растворитель в этой реакции не использовался. Хотя методы без применения растворителей обеспечивают высокий выход продуктов, но кинетические характеристики по-прежнему остаются проблемой, поскольку для проведения реакции требуется более суток. К тому же для проведения этой реакции потребовалась высокая температура — около 300 градусов по Цельсию. 

Процесс деполимеризации полиэтилена можно ускорить, используя растворитель, в котором реакция будет протекать быстрее за счет увеличения скорости массообмена и теплопередачи. Ранее мы писали, как химики из Шанхая предложили способ, основанный на комбинации трех реакций углеводородов — дегидрировании, метатезисе и гидрировании. Реакции гидрирования и дегидрирования идут на иридиевых комплексных катализаторах, а в метатезисе используется оксид рения, нанесенный на окись алюминия. В экспериментах, поставленных в работе, химики смешивали в лабораторном реакторе оба катализатора с полиэтиленом и растворителем н-октаном. Температуру реакции удалось понизить до 175 градусов по Цельсию, но ее проведение заняло 3 дня.

Теперь химики из Университета штата Вашингтон под руководством Чучуа Цзя (Chuhua Jia) разработали метод эффективного превращения полиэтилена высокой плотности в углеводороды, пригодные для авиационного топлива, с использованием растворителя в мягких условиях с высокой скоростью реакции. Реакцию жидкофазного каталитического гидрогенолиза осуществили с использованием наночастиц рутения, нанесенных на углерод (Ru/C). Ученые выбрали рутениевый катализатор, так как он хорошо показал себя в реакции превращения н-гептадекана (с 17 атомами углерода) в более короткие углеводороды. 

С помощью просвечивающей электронной микроскопии (ПЭМ) химики получили исходное изображение катализатора и изображения после нескольких циклов реакции. Средний размер частиц катализатора составлял приблизительно 3,1 нанометра, однако после первого цикла реакции размер частиц рутения увеличился до 4,1 нанометра из-за их спекания. Агрегация частиц понизила эффективность катализатора. Однако, как показали эксперименты, агрегация частиц происходила только после первого цикла, а в последующих циклах размер рутениевых наночастиц практически не менялся .

Затем исследователи подобрали оптимальное давление водорода — 30 бар, при котором реакция протекала наиболее эффективно. При увеличении давления от 0 до 60 бар скорость реакции деполимеризации сначала увеличивалась, а затем снижалась после отметки в 30 бар. Это указывает на то, что более высокое давление газа может ингибировать реакцию.

Также химики протестировали различные растворители, сосредоточившись на неполярных, так как полиэтилен имеет низкую растворимость в полярных растворителях (подобное растворяется в подобном). Оптимальным органическим растворителем оказался н-гексан. Ученые заметили, что структура растворителя сильно влияет на деполимеризацию: растворители с линейной структурой, такие как н-гексан, были более подходящими для проведения реакции, чем растворители с циклической структурой, такие как метилциклогексан.


Выбирая оптимальную температуру для реакции, химики не обнаружили нужных продуктов при 150 градусах по Цельсию, однако когда деполимеризацию проводили при 220 градусах, реакция превращения полиэтилена в жидкие углеводороды проходила с большим выходом. С дальнейшим повышением температуры выход продуктов снижался.

Выход углеводородов, подходящих для авиационного топлива (8–16 атомов углерода), за 1 час максимально составил 60 процентов по массе (при температуре реакции 220 градусов по Цельсию, давлении водорода 30 бар). В реакции использовали 0,1 грамм полиэтилена; 0,05 грамм рутениевого катализатора и 25 миллилитров растворителя н- гексана.

Пока статья химиков из Университета штата Вашингтон была в рукописном варианте, химики из Массачусетского Технологического Института в своей работе путем гидрогенолиза смогли превратить полиэтилен в жидкие алканы с использованием этого же катализатора (Ru/C), но в отсутствии растворителя. В оптимальных условиях реакции (200 градусов по Цельсию, водород под давлением 20 бар) полиэтилен превращался в углеводороды, подходящие для топлива, с выходом 45 процентов за 16 часов.

Вопрос о переработке пластика сейчас очень актуален: этот продукт человеческой деятельности загрязняет все новые места. Микропластик обнаруживают не только в почве и водоемах, а даже в воздухесоличеловеческих экскрементахкомарах. Частицы пластика нашли и в кишечниках антарктических беспозвоночных — то есть пластиковые отходы закрепились даже в пищевых цепях хрупких экосистем Антарктики.

Виктория Барановская

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.