Японская компания HAPSMobile совместно с американской Loon завершила разработку системы связи для перспективного долголетающего стратосферного беспилотного летательного аппарата HAWK30. Согласно сообщению компании, новая система обеспечит связь псевдоспутников с наземными точками доступа в интернет, а также широкополосный обмен данными между аппаратами в воздухе.
Компания HAPSMobile создает псевдоспутник HAWK30 с 2017 года. Аппарат создается по схеме «летающее крыло». Он имеет размах крыла 78 метров. Предполагается, что беспилотник сможет выполнять полеты на высоте до 20 тысяч метров на скорости до 110 километров в час. HAWK30, оснащенный десятью электромоторами с воздушными винтами, сможет находиться в воздухе до полугода.
Первый полет псевдоспутника состоялся в середине сентября 2019 года в Летно-исследовательском центре имени Армстронга. Второй полет HAWK30 был проведен спустя месяц. Ранее сообщалось, что HAWK30 планируется оснастить системой сотовой связи, с которой смогут работать как наземные терминалы, так и обычные абонентские смартфоны. Предполагается, что диаметр зоны покрытия ретрансляционного оборудования на борту HAWK30 составит около 200 километров.
Согласно сообщению HAPSMobile, система связи, разработанная для HAWK30 совместно с Loon, работает по стандарту LTE. Она также оснащена подвижными направленными антеннами, с помощью которых аппарат сможет обмениваться данными с наземными терминалами и с себе подобными аппаратами. В полете направление антенн всегда будет поддерживаться направленным на терминал и на ближайший аппарат HAWK30.
Система позволит псевдоспутникам HAWK30 обмениваться данными на удалении 700 километров друг от друга на скорости до 1 гигабита в секунду. В системе связи для HAWK30 разработчики использовали некоторые технологии, примененные в аналогичном оборудовании для стратостатов Loon. Оборудование HAWK30 рассчитано на работу при температуре до −90 градусов Цельсия.
Ранее сообщалось, что HAPSMobile запланировала проведение стратосферных испытаний своего псевдоспутника на конец финансового года, который в Японии завершится 31 марта 2020 года. Испытания беспилотника проводятся в США на базе Летно-исследовательского центра NASA имени Армстронга.
Василий Сычёв
Он выдерживает температуру в 200 градусов Цельсия на протяжении 10 минут
Инженеры разработали термоустойчивый квадрокоптер FireDrone, он способен выдержать температуру в 200 градусов Цельсия в течение десяти минут. Это стало возможно благодаря тепловой защите на основе аэрогеля из полиимида, в которую заключены все внутренние компоненты дрона, включая электромоторы. Прототип оборудован инфракрасной камерой и термодатчиками, отслеживающими внутреннюю и внешнюю температуры. Благодаря устойчивости к высоким температурам дрон может пригодиться пожарным службам для разведки во время пожаров. Статья опубликована в журнале Advanced Intelligent Systems. Во время тушения пожаров пожарные службы отправляют на место происшествия разведывательные отряды, чтобы оценить ситуацию. Это создает риск для жизни и здоровья сотрудников спасательных служб, поэтому инженеры ищут возможность использовать для этой цели дроны, которые можно было бы отправить к источнику опасности вместо людей. С помощью беспилотников можно предварительно обследовать место происшествия и определить положение источников опасности, составить план местности и попытаться найти выживших. Однако для того, чтобы работать в непосредственной близости от источника высокой температуры, дрон должен обладать термозащитой. Инженеры под руководством Мирко Ковача (Mirko Kovač) из Имперского колледжа Лондона разработали прототип квадрокоптера FireDrone с термозащитой на основе армированного стеклотканью полиимидного аэрогеля — легкого пористого геля, который состоит в основном из воздушных полостей в полиимидной матрице с добавлением стекловолокна и силикатного аэрогеля. Благодаря этой защите дрон способен выдерживать температуру до 200 градусов Цельсия на протяжении десяти минут, при этом температура внутри корпуса не превышает 40 градусов. Помимо обычной RGB-камеры, дрон оборудован также камерой, снимающей в инфракрасном диапазоне для обнаружения источников высокой температуры, в условиях сильного задымления. Бортовая электроника один раз в секунду измеряет температуру снаружи и внутри термозащитного кожуха. Внутри дрона есть система охлаждения, которая построена на использовании эффекта понижения температуры при испарении сжиженного углекислого газа, который находится в картридже. При излишнем нагреве происходит открытие клапана и небольшие трубки распределяют газ для охлаждения внутренних компонентов. Термозащита дрона построена из плоских элементов толщиной 15 миллиметров, которые крепятся к раме из полиамида, образуя ромбокубооктаэдр. Корпус такой формы проще в изготовлении, чем корпус с изогнутыми элементами, при этом он имеет достаточный внутренний объем. Для отражения инфракрасного излучения от источников тепла снаружи дрон покрыт алюминиевой фольгой. Двигатели находятся в центральной части дрона, их вращение передается пропеллерам с помощью трансмиссии. Термозащиту разработчики испытали в тепловой камере, а также в тестовых полетах вблизи источников открытого пламени. Эти эксперименты подтвердили, что за счет тепловой изоляции с помощью аэрогеля и использования системы охлаждения удается значительно замедлить рост внутренней температуры. Кратковременно дрон способен выдержать температуру даже больше 1000 градусов, однако при этом начинают происходить структурные изменения корпуса за счет деформации аэрогеля. Для чистого полиимидного аэрогеля такая деформация наблюдается уже выше 200 градусов, но дополнительные армирующие добавки позволяют снизить этот эффект. Благодаря низкой теплопроводности дрон может использоваться также и при низких температурах. И если время работы дрона в условиях высокой температуры определяется размером резервуара с углекислым газом для системы охлаждения, то в случае полетов в условиях холода, внутренняя температура поддерживается на достаточном уровне за счет тепловыделения внутренних компонентов дрона. https://www.youtube.com/watch?v=pNp2T9Sx7xY Из множества существующих дронов, предназначенных для тушения пожаров с помощью воды или огнетушителей выделяется гексакоптер NIMBUS, разработанный специалистами из Университета Небраски-Линкольна. Вместо тушения уже разгоревшегося огня, он предназначен для создания новых контролируемых поджогов — одного из методов борьбы с пожарами. Для этого он оборудован системой сброса горящих шаров.