HAWK30
HAPSMobile
Японская компания HAPSMobile 11 сентября 2019 года провела первые летные испытания перспективного псевдоспутника HAWK30, который планируется использовать в качестве летающего телекоммуникационного ретранслятора. Согласно сообщению компании, первый полет аппарата состоялся в Калифорнии на базе Летно-исследовательского центра имени Армстронга NASA.
Псевдоспутниками принято называть беспилотники с очень большой продолжительностью полета, которая обычно составляет несколько месяцев. Для обеспечения большой продолжительности полета псевдоспутники делают из очень легких материалов, а их бортовые системы запитывают от аккумуляторов и солнечных батарей.
Во время первого полета специалисты проверяли надежность бортовых систем беспилотника HAWK30 и его управляемость. Состоявшиеся испытания признаны успешными. Другие подробности о первом полете аппарата не раскрываются.
Разработка японского псевдоспутника ведется с 2017 года. Размах крыла аппарата составляет 78 метров. Согласно проекту он сможет выполнять полеты на высоте 20 тысяч метров на скорости до 110 километров в час. На HAWK30 разработчики планируют установить оборудование сотовой связи, с которым смогут поддерживать связь не только наземные терминалы, но и обычные абонентские смартфоны.
Диаметр зоны покрытия ретрансляционного оборудования на борту HAWK30, согласно заявлению разработчиков, составит 200 километров.
В начале текущего года компания Qualcomm подала заявку на получение патента на беспилотник, способный почти неограниченное время находиться в воздухе. Этот аппарат получит солнечные батареи. Предполагается, что днем он будет получать энергию от солнца, а ночью аппарат будет переворачиваться батареями к земной поверхности и питаться от лазерного излучения с наземных установок.
Василий Сычёв
Это позволяет тратить в пять раз меньше энергии, чем при полете
Стартап Revolute Robotics из Аризоны разработал гибридного робота, который способен как летать, так и ездить по поверхности. Он представляет собой квадрокоптер, закрепленный на кардановом подвесе внутри металлической клетки сферической формы. Она защищает дрон от повреждений при столкновении с препятствиями, а также выступает в роли опоры при движении по земле, так как благодаря подвесу может свободно вращаться вокруг дрона во всех направлениях. По замыслу разработчиков, робот будет использовать для дистанционного обследования технического состояния оборудования и охраны объектов, сообщает издание New Atlas. Идея о размещении дронов целиком внутри защитного каркаса не нова. Несмотря на дополнительный вес, такой подход позволяет защитить дрон со всех направлений от повреждений при столкновении с препятствиями. Особенно это актуально при полетах в тесных помещениях с большим количеством объектов, например, с целью инспекции состояния оборудования технических сооружений. Такой дрон, к примеру, сделала швейцарская компания Flybotix. Разработанный ею бикоптер имеет защиту в виде почти сферической сетки, полностью покрывающей беспилотник. Схожую конструкцию для защиты дрона использовали и японские инженеры. Однако у предложенного ими варианта была особенность — сферическая защитная клетка, состоящая из двух независимых полусфер, имела возможность свободно вращаться вокруг двух осей, благодаря чему соприкосновение с препятствием меньше влияло на траекторию полета. Дрон, разрабатываемый стартапом Revolute Robotics, также помещен внутрь металлической защитной сетки сферической формы, которая способна вращаться вокруг беспилотника. Но благодаря карданному подвесу, которым квадрокоптер изнутри соединен со сферической оболочкой, это вращение может происходить не по двум осям, а в любом направлении. Эту способность инженеры решили использовать — робот может не только летать, но и ездить по поверхности, используя собственную защитную оболочку в роли всенаправленного колеса. https://www.youtube.com/watch?v=YUcwM7pCZkk Перемещение по поверхности происходит с помощью воздушных винтов дрона, который может наклоняться внутри свободно вращающейся вокруг него сферической оболочки в нужном направлении, регулируя скорость и направление движения. Упругая конструкция клетки и колец подвеса сглаживает толчки и удары, выполняя роль амортизатора. Регулируя уровень тяги пропеллеров, робот способен взбираться по крутым склонам, а при встрече с препятствием, которое нельзя переехать, может просто облететь его по воздуху. При этом на полет тратится в пять раз больше энергии, поэтому передвижение по поверхности оказывается предпочтительнее. В качестве полезной нагрузки робот может нести камеры, лидары и другие сенсоры. Поэтому его можно будет использовать, например, для составления трехмерных карт объектов и обследования технического состояния оборудования и инженерных сооружений, в том числе для инспекции труб. Другим возможным применением робота, по мнению разработчиков может стать охрана территории. Впрочем, защитный каркас — не всегда наилучшее решение, ведь дополнительный вес защиты будет уменьшать время работы дрона. Поэтому инженеры компании Cleo Robotics, которые разработали дрон Dronut X1 специально для работы в помещениях, применили другой подход. Два соосных несущих винта дрона X1 находятся полностью внутри похожего на пончик корпуса, и поэтому надежно защищены от встречи со стенами и другими препятствиями.