Физики научились жонглировать каплями с помощью лазера

Физики из Швеции и Германии неожиданно открыли, что микрометровые глицериновые капли, подвешенные с помощью лазерного пучка, попадают на стабильные орбиты неправильной формы, причем форма орбит напоминает траектории шаров жонглера. Кроме того, ученые качественно объяснили это явление и построили его модель. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

Впервые гипотезу о том, что свет может разгонять небольшие частицы вещества, высказал еще в середине XVII века Иоганн Кеплер. Наблюдая за кометами, Кеплер заметил, что хвосты комет всегда направлены от Солнца, и предположил, что их отталкивают солнечные лучи. В середине XIX века Джеймс Максвелл построил теорию электромагнитного излучения, которая предсказывала, что световое давление действительно существует, а в конце того же века русский физик Петр Лебедев впервые измерил эту силу на практике. В 80-х годах прошлого века физики снова заинтересовались солнечным давлением благодаря работам Артура Эшкина, придумавшего оптический пинцет — устройство, которое позволяет точно и аккуратно перемещать микрометровые объекты (в том числе живые клетки) с помощью лазера. В настоящее время ученые-экспериментаторы широко используют оптический пинцет, и в прошлом году Эшкин получил за свою разработку Нобелевскую премию.

Тем не менее, далеко не все открытия Эшкина, сделанные во время работы над оптическим пинцетом, хорошо известны. Например, в 1975 году физик обнаружил, что микрометровые капли жидкости, подвешенные в воздухе с помощью лазерного луча, притягиваются друг к другу и слегка соприкасаются, прежде чем слиться. К сожалению, технические ограничения не позволили ученому подробно изучить этот процесс, и он предложил будущим поколениям исследовать слияние капель с помощью скоростной съемки. Несколько лет назад физики вспомнили про этот опыт и попытались его повторить, заменив для удобства капли жидкости кремниевыми шариками. В частности, группа под руководством Джереми Мура (Jeremy Moore) наблюдала за колебаниями шариков в течение двух минут. Тем не менее, определить траекторию частиц ученым не удалось.

Группа исследователей под руководством Келкена Чана (Kelken Chang) впервые засняла движение микрочастиц, подвешенных в лазерном пучке, с хорошим пространственным и временным разрешением. Это позволило восстановить траектории частиц. Неожиданно оказалось, что вместо того, чтобы периодически притягиваться и отталкиваться, частицы «танцуют», то есть циклически движутся по неправильным траекториям вокруг общего центра. По словам ученых, форма орбит напоминает бобы или траекторию шаров жонглера.

https:www.youtube.com/embed/XD4SzyT9itw

Схема эксперимента, который поставили ученые, напоминала схему эксперимента Эшкина. Чтобы подвесить частицы в воздухе, ученые фокусировали пучок линейно поляризованного лазера длиной волны 532 нанометра (зеленый цвет) и мощностью около одного ватта; толщина пучка составляла чуть меньше миллиметра, а его интенсивность придерживалась распределения Гаусса (выше всего в центре, ниже всего около краев). Чтобы компенсировать силу тяжести, физики направляли пучок вверх. С помощью сопла, которое контролировалось с помощью пьезоэлектрического моторчика, физики рассеивали над лазером заряженные капли жидкости (смесь 90 процентов воды и 10 процентов глицерина). Под действием силы тяжести капли постепенно оседали, пока часть из них не попадала в фокус пучка и не начинала левитировать. Характерный размер капель, подвешенных в пучке, составлял примерно 28±2 микрометра. Чтобы отследить траекторию частиц, ученые подсвечивали установку светодиодом и наблюдали за тенями частиц с помощью удаленного микроскопа (long-distance microscope). Это движение физики записывали на камеру с частотой около 45 тысяч кадров в секунду и пространственным разрешением порядка 1,7 микрометров на пиксель. Чтобы уменьшить погрешность измерений, ученые установили перед микроскопом фильтр, который отсеивал свет подвешивающего лазера, рассеянный на частицах.

Когда в пучок лазера попадали сразу две капли, они начинали притягиваться и в конце концов сталкивались. Если столкновение было лобовым, капли прыгали вниз по лучу и практически сразу сливались в более крупную каплю, которая зависала на новой высоте. Если же столкновение было касательным, капли попадали на «танцующую» орбиту. В среднем капли были удалены примерно на один диаметр, частота их вращения составляла примерно 30 герц. Несмотря на то, что подвешенные в воздухе капли подвержены температурным колебаниям, их траектории оставались стабильными в течение почти 30 минут (около 60 тысяч обращений). Наконец, траектории капель всегда лежали в плоскости, содержащей ось пучка и перпендикуляр к начальному вектору его поляризации — следовательно, движением капель можно было управлять, изменяя поляризацию лазера.

https:www.youtube.com/embed/UiqqxNjS_v8

Качественно поведение капель можно объяснить следующим образом. Когда одна из капель оказывается под другой, она экранирует электромагнитное поле пучка и ослабляет его интенсивность, поэтому верхняя капля ускоренно падает вниз под действием силы тяжести. Кроме того, она отталкивается от центра пучка, поскольку интенсивность света на краю «тени» нижней капли выше, чем в ее центре. Когда капли оказываются на одинаковой высоте, та капля, которая находится ближе к центру, поднимается (интенсивность в центре пучка выше, чем около краев), а вторая притягивается к центру пучка за счет градиентной силы. После этого цикл повторяется.

Помимо качественного объяснения происходящих процессов, физики разработали модель «жонглирования». Для этого они учли силы, действующие на капли: силу тяжести, давление света, электростатическое отталкивание и гидродинамическое сопротивление, — а затем выписали и проинтегрировали уравнение движения частицы. В результате исследователи получили траектории, которые практически совпадали с экспериментом.

Исследователи отмечают, что описанный ими эффект скорее всего бесполезно применять на практике. «Нет ничего важного в том, чтобы заниматься лазерным жонглированием», — говорит Чан. «Тем не менее, мы были рады, когда сделали это удачное открытие, удивились и нашли для него простое объяснение».

Несмотря на то, что лазерное жонглирование микрочастицами не имеет никакого практического значения, эксперименты со светом часто оказываются полезными. Например, с помощью лазеров можно построить миниатюрный ускоритель частиц. А оптический пинцет в настоящее время применяется в самых разных областях науки — с его помощью можно аккуратно перемещать клетки и собирать их в упорядоченные структуры, точно измерять силу тяги «шагающих белков» и даже проводить химические реакции между отдельными атомами. Кроме того, благодаря оптическому пинцету физики впервые получили бозе-конденсат из холодного атомного газа (Нобелевская премия 1997 года), что впоследствии позволило качественно моделировать такие сложные процессы, как излучение черной дыры или космологическая инфляция.

Дмитрий Трунин

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
«Ковер» Тальбота помог упорядоченно пленить десять тысяч атомов

В будущем это позволит проводить масштабные квантовые симуляции