Лазерное охлаждение помогло получить бозе-конденсат взаимодействующих фотонов

Американские ученые теоретически показали, что при лазерном охлаждении системы двухуровневых атомов часть испускаемых фотонов переходит в так называемую «системную моду» — бозе-конденсат взаимодействующих частиц. Свойства такого фотонного газа существенно отличаются от фотонного газа излучения абсолютно черного тела и позволяют моделировать более сложные системы подобно бозе-конденсатам холодных атомов. Статья опубликована в Physical Review A, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

Чтобы охладить облаков атомов до сверхнизких температур, физики направляют на них лазеры, полагаются на эффект Доплера и спонтанное комбинационное рассеяние. Частота лазера при этом выбирается чуть ниже частоты резонансного перехода, отвечающего комбинационному рассеянию. В результате те атомы, которые движутся навстречу фотонам лазера, попадают в резонанс, излучают и охлаждаются — из-за эффекта Доплера частота падающего света немного повышается и сравнивается с резонансной, а энергия фотона, излучаемого при комбинационном рассеянии, в большинстве случаев превышает энергию поглощенного фотона. Получается, что «недостающую» энергию приходится заимствовать из кинетической энергии атома. С другой стороны, атомы, которые движутся в противоположном направлении, со светом практически не взаимодействуют. В результате многократного повторения процессов рассеяния кинетическая энергия атомов заметно снижается; минимальная температура, которую можно получить с помощью такого метода, достигает 500 микрокельвинов. С помощью еще более хитрых методов эту температуру можно понизить еще на два порядка, вплоть до 10 микрокельвинов. Подробнее про лазерное охлаждение можно прочитать в статье «Демон Максвелла: наука невозможного» или послушать в рассказе физика Владимира Мележика.

Как правило, основная цель подобного охлаждения — получить облако атомов, которые перешли в одно и то же квантовое состояние, и исследовать их поведение в подобных необычных условиях. Такое состояние называют конденсатом Бозе — Эйнштейна. Бозе-конденсаты активно исследуются с тех пор, как их впервые получили в лаборатории, и в настоящее время ученые открыли в них множество интересных явлений. Например, оказалось, что с помощью бозе-конденсатов можно моделировать космологическую инфляцию и черные дыры, получать ридберговские поляроны и трехмерные скирмионы, и даже использовать для квантовых вычислений. В то же время, поведению фотонов, которые остаются после охлаждения конденсата, уделялось сравнительно мало внимания, хотя некоторые работы указывали на то, что в них также должны наблюдаться необычные явления.

Группа ученых под руководством Чиао Сюань Вана (Chiao-Hsuan Wang) постарались закрыть этот пробел и сосредоточилась в своей статье на термодинамических свойствах фотонов, которые излучаются при охлаждении атомов, помещенных в микрополость. Для простоты физики теоретически рассмотрели систему атомов, имеющих два энергетических уровня и взаимодействующих с монохроматическим (одноцветным) лазерным излучением. Фотоны, которые излучаются в ходе доплеровского охлаждения такой системы, разбиваются на две группы (моды). В одну группу входят «оптически тонкие» фотоны, которые свободно проходят сквозь облако атомов и позволяют ему охлаждаться по описанному выше сценарию (так называемая «фоновая мода», «bath» mode). В другую группу попадают «оптически толстые» фотоны, которые быстро поглощаются облаком и не дают ему охлаждаться («системная мода», «system» mode). Как показали авторы статьи, несмотря на короткую продолжительность жизни, фотоны из второй группы обладают интересными термодинамическими свойствами.

Для моделирования системы ученые использовали «метод квантовых прыжков» (quantum jump method), который заключается в следующем. На первом шаге программа рассчитывает эволюцию волновой функции системы под действием модельного гамильтониана, то есть находит ее квантовую траекторию. В каждый момент времени система находится в конкретном состоянии, однако с некоторой вероятностью может «перепрыгнуть» в соседние состояния, дискретно изменяя свои параметры. Затем квантовые траектории, полученные при разных исходных значениях параметров, усредняют, и на основании этого усреднения рассчитывают матрицу плотности вероятностей системы. Для простоты физики пренебрегали взаимодействием между фотонами лазера и фотонами «системной моды», а также рассматривали предел низкоэнергетических возбуждений, в котором частота Раби, ответственная за колебания населенности энергетических уровней системы, много меньше «расстройки», то есть разницы между резонансной частотой и частотой лазера.

Помещенные в такие условия атомы постепенно охлаждаются, излучая фотоны «фоновой моды», и достигают теплового равновесия при температуре T, которая определяется величиной «расстройки» и временем жизни возбужденного состояния. После установления равновесия в системе появляется «системная мода», фотоны которой рассеиваются на атомах, переходят в фотоны «фоновой моды» и обратно, а также участвуют в более сложных процессах рассеяния. Оказывается, что эти фотоны ведут себя как бозе-конденсат взаимодействующих частиц — их функция распределения совпадает с функцией распределения Бозе — Эйнштейна и полностью описывается температурой и химическим потенциалом. Важно отметить, что фотоны «системной моды» заимствуются из излучения охлаждающего лазера, а охлаждаемые атомы служат для них своеобразным энергетическим резервуаром. Поэтому возникающий фотонный газ существенно отличается от хорошо изученного излучения абсолютно черного тела — в этом случае атомы тела служат для газа как источником энергии, так и источником частиц. Функция распределения такого газа имеет повторяет распределения Максвелла для скоростей атомов тела, а его температура всего лишь отражает температуру тела. Для «системной моды», исследованной учеными, это не так. Более того, химический потенциал излучения абсолютно черного тела строго равен нулю, а для «системной моды» он положителен. Это указывает на взаимодействие между фотонами газа.

Таким образом, фотоны «системной моды» ведут себя в точности как бозе-конденсаты холодных атомов — следовательно, их можно с таким же успехом охлаждать и использовать для моделирования более сложных процессов. В частности, авторы статьи предлагают моделировать с их помощью квантовые системы многих тел — например, квантовый эффект Холла. Конечно, пока работа физиков носит исключительно теоретический характер, однако оценки ученых показывают, что получить бозе-конденсат фотонов «системной моды» сравнительно несложно. Возможно, в скором времени ученые получат и исследуют такую систему на практике.

Физики часто используют лазерное излучение, чтобы охлаждать облака атомов и исследовать различные тонкие эффекты. Например, австралийские физики измерили силу, действующую на ион иттербия, помещенный в оптическую ловушку, с точностью до сотых долей аттоньютона, а американские исследователи впервые провели химическую реакцию между двумя отдельными атомами щелочных металлов, удерживая и сталкивая их с помощью лазеров. Кроме того, использование лазеров позволило ученым сфотографировать отдельный атом на обычную камеру, охладить «микробарабан» ниже стандартного квантового предела и научиться управлять движением топологических дефектов в ионных цепочках.

Дмитрий Трунин

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Почти не сопротивлялся

Как открыли и закрыли потенциальный сверхпроводник LK-99