Ученые из Университета Глазго разработали технологию кодирования двух изображений на одной поверхности. Она основана на использовании специальных пикселей-фильтров, которые при просвечивании пропускают тот или иной цвет в зависимости от поляризации падающего света. Из-за высокого разрешения таких изображений ученые предлагают использовать их в качестве альтернативы голограммам для защиты от подделок, или же для хранения информации. Исследование опубликовано в журнале Advanced Functional Materials.
В своей работе исследователи использовали явления плазмонного резонанса. Он возникает, когда частота падающего света совпадает с частотой колебаний электронов в материале. В результате возникает резонанс и свет поглощается. Одна из главных особенностей этого явления, позволяющая использовать его в различных устройствах, — зависимость частоты резонанса от размера частицы. На этой особенности и основана работа британских исследователей.
В качестве материала ученые использовали алюминиевую пленку толщиной 100 нанометров, помещенную на подложку из боросиликатного стекла и покрытую 150-нанометровым слоем диоксида кремния. В пленке сделаны крестообразные отверстия с разными размерами по вертикали и горизонтали, а также разным периодом расположения. За счет такого строения ученые получили поверхность, которая по-разному пропускает свет разной поляризации. Меняя параметры отверстий, они также получили большое количество цветов, в которые можно «окрашивать» поверхность.
Ученые продемонстрировали поверхность, в которой закодировали два изображения. Если такую поверхность осветить белым светом, то в зависимости от его поляризации на ней будет виден либо герб университета, либо башня одного из его зданий. Исследователи рассматривают два основных применения для такой технологии. Поскольку такая поверхность может хранить до 1,46 гигабайта данных на квадратный сантиметр, они предлагают использовать ее в качестве основы запоминающих устройств. Помимо этого, такими поверхностями, из-за сложности их создания, можно защищать банкноты и документы от подделывания.
Существуют и другие технологии защиты от подделок, основанные на сложных микроструктурах. К примеру, недавно корейские ученые научились создавать микроскопические узоры, мелкие детали которых из-за особенностей технологического процесса образуются случайным образом, за счет чего подделать такую структуру практически невозможно, даже имея серьезное лабораторное оборудование. А британские ученые научились снимать «отпечатки пальцев» у бумажных листов — микроструктуру, состоящую из переплетений целлюлозных волокон и уникальную для каждого документа, напечатанного на бумаге.
В прошлом году австралийские ученые создали похожую технологию, в которой алюминиевые структуры использовались для создания поверхностей, которые отражают разные цвета в зависимости от поляризации падающего света.
Григорий Копиев
Он расходится с последними теоретическими предсказаниями со статистической значимостью в 5σ
Физики представили новые результаты эксперимента Muon g-2 в Фермилабе по измерению аномального магнитного момента мюона. Согласно анализу данных двух новых сеансов измерений, физикам удалось больше чем в два раза уменьшить неопределенность измеренного значения. С учетом всех собранных Muon g-2 экспериментальных данных, новый результат противоречит последним предсказаниям Стандартной модели со статистической значимостью в 5,0σ. Согласно авторам статьи, препринт которой доступен на сайте эксперимента, статистическая значимость расхождения, вероятно, ослабнет, если включить в расчет предсказаний недавно опубликованные теоретические и экспериментальные результаты других коллабораций. Также о результатах эксперимента рассказывается на сайте ИЯФ имени Будкера, а запись научного семинара с докладом о последних результатах Muon g-2 доступна на YouTube.Значение магнитного момента мюона — одна из немногих напрямую измеряемых аномалий в современной физике, которая может указывать на существования физики за пределами Стандартной модели. Дело в том, что в это значение вносит вклад взаимодействие этого тяжелого лептона с существующими в нашей модели Вселенной виртуальными частицами. За счет большой массы мюона такой вклад различим на фоне хорошо предсказываемых электромагнитных поправок. Он же позволяет судить о существовании потенциально неоткрытых полей и частиц: расхождения измеренного значения магнитного момента и теоретических расчетов может указывать на неполноту теории. Однако сложность таких измерений в том, что относительная разница измеренного экспериментом и предсказанного теорией значений может проявляться только в шестом знаке после запятой. Для достижения такой точности измерений необходим большой массив экспериментальных данных, а также уверенность в том, что из их анализа были исключены любые систематические вклады и неопределенности в теории. Кроме того, сами предсказания Стандартной модели обладают погрешностью и зависят от параметров существующих в ней частиц и процессов. Два года назад мы уже рассказывали о природе аномального магнитного момента мюона и о том, как эксперимент Muon g-2 впервые увидел расхождение теории и эксперимента. Тогда в совокупности с данными двадцатилетней давности эксперимента-предшественника E821 в Брукхейвенской национальной лаборатории статистическая значимость расхождения составила 4,2 стандартных отклонения (или 4,2σ), чего лишь немного не хватило до общепринятого порога официального открытия в 5σ. Вчера участники коллаборации Muon g-2, в том числе физики из институтов Великобритании, Германии, Италии, Китая, России и США, представили результаты анализа данных двух новых сеансов измерений, которые состоялись в 2019 и 2020 годах. Полученное значение аномального магнитного момента совпало в пределах погрешности с результатами за первый сеанс измерений и эксперимента E821, а относительную точность измерения удалось уменьшить больше чем в два раза: с 0,46 до 0,20 миллионных долей. Как и в первом сеансе набора данных, магнитный момент мюона физики измеряли через разность циклотронной частоты и частоты спиновой прецессии поляризованных антимюонов (частица с противоположным по знаку мюону зарядом, но теми же свойствами) в накопительном кольце в сильном магнитном поле. Эта разность частот пропорциональна абсолютной величине аномального магнитного момента мюона и магнитному полю. Поэтому непрерывно измеряя магнитные поля внутри кольца с помощью ЯМР-проб, физики могли получить искомое значение магнитного момента. При этом сам антимюон в накопительном кольце достаточно быстро распадался на два нейтрино и позитрон, который за счет меньшей массы отклонялся в сторону внутреннего радиуса накопительного кольца, покрытого калориметрами. Искомую разность частот измеряли по колебаниям в количестве электронов, зарегистрированных с помощью этих детекторов. Столь сильно уменьшить погрешность измерений физикам удалось не только за счет увеличения количества набранных данных в 5 раз, но и благодаря оптимизации установки и процесса анализа данных. К примеру, ученые обернули кольцо в теплоизолирующий кожух и улучшили систему кондиционирования экспериментального холла, чтобы уменьшить колебания температуры, которые влияли на магнитное поле внутри установки. Большой вклад также внесли улучшение хранения пучка в кольце и оптимизация квадрупольных и дипольных магнитов в установке с обновленной техникой измерения их влияния на динамику пучка. В результате систематическая погрешность измерений составила всего 0,07 миллионных долей, что уже меньше цели эксперимента в 0,1 миллионных долей. К 2025 году физики собираются достигнуть цель и по статистической погрешности за счет обработки данных еще 3 сеансов набора данных, проведенных в 2021-2023 годах. Формально, с учетом всех собранных данных, измеренное экспериментом Muon g-2 значение аномального магнитного момента мюона уже сейчас противоречит предсказаниям Стандартной модели со статистической значимостью в 5σ, а с учетом данных эксперимента E821 — в 5,1σ. Однако участники коллаборации предостерегают от поспешных выводов: это сравнения с устаревшим расчетом теоретической группы эксперимента, опубликованным в 2020 году. По мнению ученых, недавно опубликованные данные эксперимента КМД-3 в Институте ядерной физики имени Будкера и теоретические расчеты коллаборации BMW должны повлиять на теоретические предсказания и потенциально сблизить их с экспериментально полученным значением. Еще одно прямое указание на Новую физику — переносчик слабого взаимодействия W-бозон. Год назад мы рассказывали о том, что измеренное коллаборацией CDF значение массы этой частицы разошлось с предсказаниями Стандартной модели на 7 стандартных отклонений.