Исследователи из швейцарского Национального исследовательского центра робототехники (NCCR) и Федеральной политехнической школы Лозанны разработали устойчивый к столкновениям квадрокоптер с эластичной рамой на магнитах. Статья опубликована в IEEE Robotics and Automation Letters, также краткое описание проекта доступно на сайте EPFL.
Одна из очевидных проблем при эксплуатации небольших мультикоптеров заключается в том, что рано или поздно дрон упадет или врежется в препятствие, что, в свою очередь, может привести к поломке. Разработчики по-разному подходят к решению этой проблемы в зависимости от выполняемых задач — например, крепят снаружи беспилотника дополнительный защитный каркас, экспериментируют с различными материалами, в том числе эластичными, усиливают раму или, напротив, делают ее свободно разрушающейся для минимизации возможных повреждений.
Инженеры из NCCR и EPFL решили использовать раму, состоящую из стеклопластиковых деталей толщиной 0,3 миллиметра, при этом рама получилась прочной и, благодаря небольшой толщине пластин, эластичной. Рама крепится к жесткому ядру с аккумулятором и бортовым компьютером с помощью магнитов, которые удерживают всю конструкцию в полете, но позволяют деталям рамы отделяться при сильном ударе.
Между магнитами расположены контактные площадки для соединения роторов с ядром, а сама рама дополнительно привязана к основной части с помощью резинок, благодаря чему даже при сильном ударе все элементы конструкции притягиваются обратно к ядру. Исследователи отмечают, что благодаря такому дизайну ядро не привязано к количеству роторов и подобный беспилотник можно легко масштабировать, заменяя раму.
Во время проведенных испытаний авторы роняли квадрокоптер с разной высоты вплоть до двух метров и намеренно врезались в препятствия. Всего беспилотник успешно пережил более 50 ударов и каждый раз успешно собирался обратно, при этом время самосборки дрона составляет меньше секунды. По словам авторов, такая конструкция может пригодиться не только беспилотникам, но и другим роботам.
Из других примеров противоударных дронов можно вспомнить гоночный дрон в углепластиковом монококе Nimbus или, например модульный робоконструктор Airblock. Также существуют мультикоптеры, полагающиеся на внешний защитный каркас — такое решение предложили исследователи из Пенсильванского университета, также существует промышленный квадрокоптер Elios, разработанный швейцарской компанией Flyability, который защищен сферическим каркасом на свободно вращающемся подвесе.
Его система управления автоматически находит оптимальные точки в воздушных потоках
Инженеры разработали алгоритм управления для беспилотников самолетного типа, который позволяет парить на восходящих воздушных потоках, расходуя в 150 раз меньше энергии, чем при активном полете с работающим двигателем. Алгоритм отслеживает и подстраивается под непрерывно изменяющиеся воздушные потоки, сохраняя высоту. Препринт доступен на arXiv.org. При поддержке Angie — первого российского веб-сервера Беспилотники самолетного типа более энергоэффективны, чем мультикоптеры. Благодаря крыльям они способны преодолевать большие дистанции и могут гораздо дольше находиться в воздухе. Причем эти параметры могут быть увеличены за счет парения — планирующего полета, в котором аппарат использует восходящие воздушные потоки для удержания в воздухе без использования тяги двигателей, аналогично тому, как это делают некоторые птицы. Группа инженеров под руководством Гвидо де Круна (Guido de Croon) из Делфтского технического университета разработала систему управления, которая позволяет беспилотникам самолетного типа без какой-либо предварительной информации о поле ветра самостоятельно находить оптимальные точки в восходящих воздушных потоках и использовать их для длительного парения с минимальным расходом энергии. В системе управления вместо обычного ПИД-регулятора используется метод инкрементальной нелинейной динамической инверсии, контролирующий угловое ускорение, подстраивая его под желаемые значения. Система управления может без изменения настроек работать и в режиме парения, и при полете с включенным двигателем во время поиска новых оптимальных точек в воздушных потоках или для компенсации резких порывов ветра. Для поиска оптимальных точек в поле ветра, в которых скорость снижения полностью компенсируется восходящим потоком воздуха, применяется алгоритм имитации отжига. Он случайно выбирает направления в пространстве пытаясь найти такую точку, в которой беспилотник может устойчиво лететь с минимально возможной тягой двигателя. Для тестов инженеры построили 3D-печатный прототип на основе модели радиоуправляемого самолета Eclipson model C. Он имеет размах крыла 1100 миллиметров и массу 716 грамм вместе с аккумуляторной батареей. В качестве полетного контроллера применяется Pixhawk 4. Помимо установленного под крылом и откалиброванного в аэродинамической трубе сенсора скорости, беспилотник имеет GPS-модуль для отслеживания положения во время полетов на открытом воздухе. В помещении применяется оптическая система Optitrack. Испытания проводились в аэродинамической трубе, возле которой установили наклонную рампу, для создания восходящего воздушного потока. Прототип запускали в воздушном потоке сначала на ручном управлении, после чего включали автопилот. Разработчики провели эксперименты двух типов. В первом они постепенно изменяли скорость воздушного потока от 8,5 до 9,8 метров в секунду при фиксированном угле наклона рампы. Во втором эксперименте скорость воздушного потока оставалась неизменной, зато менялся угол установки подиума. В обоих случаях алгоритм системы управления быстро находил в поле ветра точки, в которых мог поддерживать планирующий полет в течение более чем 25 минут, лишь изредка задействуя тягу двигателя в среднем лишь на 0,25 процента от максимальной, хотя при таких значениях воздушного потока для поддержания обычного полета требуется около 38 процентов. При изменении поля ветра из-за изменившегося угла наклона рампы или скорости воздушного потока алгоритм успешно находил и удерживал новое положение равновесия. В будущем инженеры планируют провести испытания на открытом воздухе. https://www.youtube.com/watch?v=b_YLoinHepo Американские инженеры и планетологи предложили использовать планер, способный длительное время держаться в воздухе за счет восходящих потоков и термиков, для изучения каньонов Марса. Предполагается, что такие аппараты с надувными разворачиваемыми крыльями могут стартовать с аэростата или дирижабля и затем планировать в атмосфере Марса от 20 минут до суток.