И описали, как эти связи меняют распределение кварков и глюонов
Физики описали влияние коррелированных пар нуклонов на распределение кварков и глюонов внутри атомных ядер. Ученые использовали данные экспериментов высоких энергий и показали, как парные связи между протонами и нейтронами внутри ядер меняют их структуру на уровне партонов. Работа опубликована в журнале Physical Review Letters.
Физики уже много десятилетий изучают структуру атомных ядер, где взаимодействия между составляющими их протонами и нейтронами описываются теорией квантовой хромодинамики. Ранее ученые фокусировались на индивидуальных нуклонах в ядре и составляли модели их поведения при высоких энергиях. Однако недавно обнаружилось, что внутри ядер образуются короткоживущие пары нуклонов с сильной взаимной корреляцией, которые оказывают существенное влияние на распределение частиц и общие свойства ядер. Впрочем, до сих пор не существовало описания этого влияния на распределение кварков и глюонов в ядре.
Физики из Германии, Израиля, США и Франции под руководством Эндрю Деннистона (A. W. Denniston) из Массачусетского технологического института и Томаса Йезо (T. Ježo) из Университета Мюнстера описали влияние коррелированных пар нуклонов на распределение партонов в ядрах. Для этого ученые провели детальный анализ взаимодействий нуклонов на основе данных о глубоко неупругом рассеянии лептонов, производстве бозонов W и Z, а также эффекте Дрелла — Яна. Исследователи внедрили в расчеты не только индивидуальные нуклоны, как в классическом подходе, но и парные корреляции, что позволило построить модельный образ структуры кварков и глюонов в парах нуклонов.
В результате ученые впервые смогли выделить универсальные параметры для кварков и глюонов в парах коррелированных нуклонов, подтверждающие уникальные свойства таких связей в ядрах. Оказалось, что пары нуклонов значительно влияют на распределение элементарных частиц, особенно на высоких уровнях энергии. По мнению авторов, их результаты также подтверждают гипотезу о доминировании протон-нейтронных пар в большинстве ядер, особенно в условиях высоких энергий.
Физики полагают, что результаты их исследования помогут в изучении природы атомных ядер и взаимосвязи между ядерными и кварковыми структурами. О том, как физики изучают ядра атомов и улучшают теорию, мы писали на примере исследования зарядового радиуса изотопов никеля.
Зато помог установить наилучшее ограничение на их параметры
Физики из эксперимента LUX-ZEPLIN (LZ) не увидели частиц темной материи за 280 дней набора данных. Зато установили рекордное ограничение на их параметры при помощи двухфазного детектора на жидком ксеноне. Об этом ученые сообщили на конференциях TeV Particle Astrophysics и LIDINE 2024, а также в пресс-релизе на сайте Национальной лаборатории в Беркли.