Работу прекратили на две недели раньше ради экономии электроэнергии
В понедельник утром ЦЕРН остановил работу Большого адронного коллайдера на традиционные зимние каникулы, которые продлятся до марта 2023 года, свидетельствуют данные из онлайн-монитора состояния коллайдера. В этом году ускоритель закончил работу на две недели раньше, чем планировалось, из-за необходимости экономить электроэнергию.
Работу Большого адронного коллайдера — крупнейшего на планете и самого мощного ускорителя заряженных частиц — разделяют на несколько сезонов. Первый продолжался с 2008 по 2013 год, когда самым значимым результатом стало открытие бозона Хиггса (подробнее о нем можно узнать в нашем материале «С днем рождения, БАК!», созданном к десятилетию со дня официального запуска). Второй сезон после двухлетней модернизации начался в 2016 году и продлился до 2018 года. За это время ученые довели энергию протонов до 6,5 тераэлектронвольта и активно исследовали столкновения тяжелых ионов. Третий сезон работы после затянувшейся на несколько лет паузы стартовал в нынешнем году.
В этом году физики продолжили постепенно увеличивать энергию протонов до 6,8 тераэлектронвольта — это соответствует энергии столкновений, равной 13,6 тераэлектронвольта. Кроме того, на этот сезон ученые запланировали существенно увеличить светимость, чтобы число видимых детекторами столкновений частиц заметно выросло. Также были запланированы программа столкновения тяжелых ионов и некоторые другие эксперименты.
Однако в сентябре стало известно, что ЦЕРН присоединится ко всем европейским странам в их усилиях по экономии электроэнергии. Дело в том, что весь ЦЕРН потребляет примерно столько же энергии, как весь швейцарский город Женева. Примерно треть от этого приходится на БАК. Планировалось, что остановка произойдет 28 ноября, то есть на две недели раньше, первоначального срока.
Сегодня стало известно, что ЦЕРН действительно остановил работу Большого адронного коллайдера. На выпавший период пришлись эксперименты коллаборации ALICE по столкновениям ядер свинца. Судя по расписанию работы БАК на 2022 год, эксперименты с ядрами свинца продолжались всего лишь два дня, хотя первоначально на них отводилось около четырех недель. После зимней паузы работу коллайдера, согласно предварительным планам, начнут в марте 2023 года.
Россия сотрудничала с Европейской организацией ядерных исследований 30 лет, но летом этого года ЦЕРН принял решение прекратить сотрудничество. Подробнее о завершении совместных научных проектов с российскими организациями можно прочитать в материале «Двери закрываются».
ST-40 построен частной британской компанией
Американские и британские физики установили рекорд по достигнутой ионной температуре плазмы в сферических токамаках, который оказался сравним с температурой плазмы в будущем термоядерном реакторе ITER. Рекорд установлен на небольшом частном сферомаке ST40 и доказывает перспективность установок такого типа для работ в области термоядерной энергетики. Статья опубликована в журнале Nuclear Fusion. Сферические токамаки (сферомаки) представляют собой разновидность токамаков — магнитных ловушек, в которых шнур из высокотемпературной плазмы в виде тора, где идут реакции слияния ядер дейтерия и трития, удерживается внутри вакуумной камеры мощными магнитными полями, которые не дают ему коснуться стенок камеры. Однако, в отличие от обычных токамаков у сферомаков меньшее аспектное отношение (отношение большого радиуса тора к малому), которое близко к единице. Считается, что плазма в таких установках может удерживаться дольше и стабильнее, при этом не требуется создавать установку огромных размеров, как экспериментальные реакторы-токамаки ITER или DEMO. Особенно интересны сферомаки в контексте использования в их магнитной системе высокотемпературных сверхпроводников. Но необходимо решить множество физических и инженерных проблем, прежде чем удостовериться, что сферомаки можно рассматривать в качестве перспективных термоядерных реакторов. ST40 — один из действующих экспериментальных сферомаков. Этот компактный токамак был построен частной британской компанией Tokamak Energy и получил первую плазму в 2017 году. Сферомак оснащен вакуумной камерой из нержавеющей стали и сверхпроводящими тороидальными магнитными катушками. Он характеризуется аспектным отношением 1,6–1,9, большим радиусом плазмы 0,4–0,5 метра, током плазмы в диапазоне 0,4–0,8 мегаампер и осевым тороидальным магнитным полем 1,5–2,2 Тесла. Зажигание разряда инициируется за счет компрессии и магнитного пересоединения, без центрального соленоида, который служит для дальнейшего нагрева плазмы. Дополнительный нагрев плазмы обеспечивается двумя системами инжекции высокоэнергетичных нейтральных частиц дейтерия в плазменный шнур. Физики из Принстонской лаборатории физики плазмы, Ок-Риджской национальной лаборатории и Tokamak Energy во главе со Стивеном Макнамарой (Steven A.M. McNamara) сообщили, что достигли рекордно большой для всех сферомаков температуры ионов дейтерия, которая составила 8,6 килоэлектронвольт в центре плазменного шнура. Объем плазмы во время эксперимента составлял 0,9 кубического метра, ток плазмы — 0,6 мегаампер, время жизни разряда — чуть менее 0,15 секунды, а тороидальное магнитное поле — 1,9 Тесла. Максимальная электронная плотность плазмы составила 4,5×1019 частиц в кубическом метре, усредненная, которая поддерживалась во время импульса — 4×1019 частиц в кубическом метре. Достигнутая температура ионов стала самой высокой для сферомаков или токамаков сопоставимых размеров, похожие температуры достигались только на более крупных установках. Для сравнения — в проекте международного термоядерного реактора ITER предполагается достижение ионной температуры в 8 и выше килоэлектронвольт, однако время горения разряда там должно составить около 400 секунд, правда сам реактор гораздо больше по размерам, чем ST-40. Значение тройного термоядерного произведения (температура на плотность плазмы на время удержания энергии, выступает как аналог критерия Лоуссона) для ST-40 составило 6×1018 килоэлектронвольт на секунду, деленное на кубический метр. Результаты экспериментов показывают, что высокие температуры действительно могут быть получены в небольших по размерам сферомаках с сильным магнитным полем. Tokamak Energy надеется, что сможет в середине 2020-х годов ввести в эксплуатацию новый сферомак ST-HTS, который будет оснащен магнитной системой, использующей высокотемпературные сверхпроводники. Ранее мы рассказывали о том, как российские физики рекордно разогрели плазму в сферическом токамаке «Глобус-М2».