Американские исследователи разработали систему, с помощью которой смогли восстановить и в течение шести часов поддерживать кровоснабжение органов у свиней через час после смерти. При этом биохимические показатели были практически нормальными и стабильными, а органы предохранялись от деградации на тканевом, клеточном и молекулярном уровне. Отчет о работе опубликован в журнале Nature.
Вскоре после прекращения дыхания и кровообращения клетки в тканях закисляются и отекают, что приводит к нарушению целостности их мембран и гибели. В организме в большом количестве выделяются гормоны и цитокины, активируются нервная, иммунная и свертывающая системы. Все это приводит к повреждению органов, системному ацидозу и гиперкалиемии. Тем не менее, исследователям неоднократно удавалось получить образцы жизнеспособных клеток и тканей, а также зафиксировать электрофизиологическую активность спустя длительное время после смерти.
Поддержание жизнеспособности органов и тканей — ключевая задача трансплантологии. Обычно ее обеспечивают промыванием органа специальным раствором и его охлаждением, но такой подход работает лишь в течение нескольких часов. В экспериментах удается значительно продлить время жизни извлеченных из организма почек, печени, сердца и легких, создавая определенные условия и искусственно обеспечивая их перфузию (ток жидкости по системе кровеносных сосудов).
В 2019 году сотрудники Йельского университета под руководством Ненада Сестана (Nenad Sestan) представили систему BrainEx, с помощью которой им удалось восстановить кровоток и отдельные функции в изолированном свином мозге через четыре часа после смерти животного. Теперь они усовершенствовали ее и испытали в масштабах целого организма. Новая система получила название OrganEx.
Она состоит из резервуара с перфузионным раствором, оксигенатора (для насыщения кислородом и выведения углекислого газа), диализатора (для удаления продуктов метаболизма и распада тканей), систем подачи гепарина (для предотвращения свертывания крови) и смеси лекарственных препаратов (в том числе антиоксидантов и экспериментальных супрессоров механизмов клеточной смерти), соединенных системой насосов, а также регулятора температуры, набора датчиков и системы управления. Подготовленный раствор подается из выхода системы через артериальный катетер в аорту ниже отхождения от нее почечных артерий и, прошедший через весь организм и смешанный с кровью, забирается на вход по венозному катетеру из правого предсердия. Раствор подается с пульсацией, которая имитирует естественный кровоток, под контролем артериального давления.
Для получения перфузата исследователи модифицировали разработанный ими ранее Hemopure, который представляет собой очищенный полимеризованный телячий гемоглобин в сбалансированном растворе лактата и минеральных солей. В соответствии с данными от метаболических датчиков система в процессе циркуляции добавляет в него электролиты (или удаляет их излишки), буферные растворы, глюкозу, аминокислоты, витамины и другие необходимые вещества.
Для испытаний OrganEx использовали свиней (Sus scrofa domesticus) массой 30–35 килограмм. После введения гепарина и препаратов для наркоза у них вызывали остановку сердца. У части животных забирали ткани на анализы непосредственно после этого. Остальных оставляли, поддерживая температуру тела на физиологическом уровне 36–37 градусов Цельсия. После этого еще у части животных проводили вскрытие с забором образцов спустя час и семь часов.
Остальным через час после остановки сердца либо начинали проводить стандартную экстракорпоральную мембранную оксигенацию (ЭКМО) собственной крови животных, либо подключали их к OrganEx и наблюдали в течение шести часов с последующим забором образцов.
Флюороскопическая ангиография, допплерография, оксиметрия и анализы крови показали, что экспериментальная система обеспечила адекватную перфузию и стабильное насыщение кислородом внутренних органов и мозга с нормализацией кислотности и электролитного состава крови, в то время как ЭКМО с этой задачей не справилась.
Функциональные показатели, включая поглощение глюкозы разными тканями, сократительную активность сердца, синтез белков в печени и другие, подтвердили высокую сохранность органов у животных из основной группы.
Иммуногистохимическое исследование образцов префронтальной коры мозга, гиппокампа, сердца, печени и почек показало, что через шесть часов после подключения к OrganEx эти органы сохраняют свою тканевую и клеточную целостность на уровне, сопоставимом с образцами, полученными сразу после смерти. Кроме того, в клетках мозга, сердца, печени и почек наблюдалось подавление выработки маркеров различных сигнальных путей клеточной гибели, таких как активированная каспаза 3 (actCASP3), результаты TUNEL, интерлейкин-1β, сериновая/треониновая киназа 3 (RIPK3) и глутатионпероксидаза 4 (GPX4). При ЭКМО, напротив, происходило выраженное некротическое повреждение клеток и тканей.
Результаты секвенирования РНК одиночных ядер в образцах гиппокампа, сердца, печени и почек подтвердили супрессию повреждения клеток и указали на запуск некоторых восстановительных процессов в них при использовании OrganEx.
По мнению авторов работы, полученные результаты не только свидетельствуют о функциональной пригодности разработанной методики, но и указывают на недооцененный потенциал клеточного восстановления после длительного отсутствия кровоснабжения при поддержании температуры тела у крупных млекопитающих.
В случае успеха дальнейших испытаний OrganEx может значительно увеличить количество качественных органов для трансплантации. В далекой перспективе модификации этой системы, возможно, найдут применение и в спасении пациентов, находящихся в критическом состоянии.
Как отметил в сопутствующем комментарии в Nature эксперт по биоэтике и законодательству в области трансплантологии Брендан Пэрент (Brendan Parent) из Нью-Йоркского университета, при внедрении подобных систем в клиническую практику придется серьезно пересмотреть подход к прекращению жизнеобеспечения безнадежных пациентов, поскольку здесь идет речь о сохранении органов, не извлеченных из тела донора.
Возможности пересадки органов растут с каждым годом. В январе американские врачи впервые использовали для этих целей генетически модифицированное свиное сердце. Оно заработало, но через два месяца реципиент скончался из-за занесенного с трансплантатом свиного цитомегаловируса. Это не остановило исследователей, и в июле они пересадили еще два подобных органа пациентам с диагностированной смертью мозга. Тем временем их швейцарским коллегам удалось успешно использовать для трансплантации печень, которую с помощью перфузии сохраняли на протяжении трех дней.
Проверить свои знания о достижениях современной трансплантологии можно в тесте «Незаменимые есть?».
Олег Лищук
Почему Нобелевскую премию за микроРНК не вручили 18 лет назад
За несколько дней до объявления первых Нобелевских лауреатов 2024 года журнал Nature составил портрет среднестатистического нобелиата, собрав данные за 123 года существования премии и обобщив биографии 646 ее получателей. Виктор Эмброс и Гэри Равкан вписываются в этот образ идеально: они оба немолоды и выросли в США, начали свою карьеру под руководством других нобелиатов и прождали своей премии почти 30 лет. Но есть одно обстоятельство, которое выделяет их судьбу из общего ряда: про их открытие однажды уже писали в Нобелевском пресс-релизе. Это было 18 лет назад, когда премию присудили другим людям. Рассказываем, как так получилось и почему Эмбросу и Равкану пришлось так долго ждать своей награды.