Трое биологов заключили, что стадия первичной полоски, которую эмбрион человека проходит после 14 дней жизни, на самом деле необязательна для его развития. Раньше считалось, что она необходима для гаструляции, то есть разделения плоского клеточного диска на три слоя. Но авторы статьи в журнале Science полагают, что роль первичной полоски состоит только в том, чтобы отметить середину хвостовой части. Если это так, то в модели человеческого развития in vitro ее можно будет «пропустить». Кроме того, придется пересмотреть «правило 14 дней», которое запрещает культивировать зародыши дальше этой стадии.
До недавнего времени эксперименты на зародышах человека было положено прерывать не позже 14-го дня развития. О том, откуда взялась эта граница, мы подробно рассказывали в тексте «14 дней спустя». Среди аргументов, которые выдвигали авторы этого запрета, был, например, такой: после этого начинает развиваться нервная система — а значит, зародыш теоретически может что-то чувствовать. Или такой: после этого времени невозможно появление самостоятельных близнецов (только сиамские), а значит, эмбрион приобретает индивидуальность.
В 2021 году эту международно признанную границу отменили (хотя в некоторых странах она все еще зафиксирована законодательно). Теперь решать, допустимы ли те или иные эксперименты, будут этические комитеты на местах. А эмбриологи взялись пересматривать аргументы, которые подкрепляли предыдущую границу. Например, они обнаружили, что в зародыше человека на стадии 16-19 дней еще нет никаких предшественников нервных клеток.
Теперь трое ученых — Шэн Гоцзюнь (Guojun Sheng) из Университета Кунамото, Альфонсо Мартинес Ариас (Alfonso Martinez Arias) из Университета Пумпеу Фабра и Энн Сазерленд (Ann Sutherland) из Университета Вирджинии — взялись оспорить еще одну из сторон «правила 14 дней».
В последней версии правила значилось, что эксперименты можно проводить «не дольше стадии первичной полоски» — это стадия, которой обычно человеческий эмбрион достигает к 14 дням жизни в матке. На стадии первичной полоски зародыш человека выглядит как плоский однослойный клеточный диск. Чтобы начать формировать системы органов, ему нужно образовать внутренний и средний клеточные слои. Для этого клетки из единственного слоя (который потом станет верхним) начинают мигрировать, выселяясь в нижние слои. Вслед за ними подтягиваются соседи, и образуется первичная полоска — продольное углубление в задней части зародыша.
Процесс разделения клеток на три слоя называют гаструляцией. Гоцзюнь, Ариас и Сазерленд утверждают: несмотря на то, что во время гаструляции в эмбрионе человека образуется первичная полоска, сама по себе эта структура не является важным этапом в развитии человека, и без нее вполне можно было бы обойтись. В пользу этого предположения они выдвигают следующие аргументы.
Во-первых, стадия первичной полоски появилась в эволюции относительно недавно. Хотя общие принципы гаструляции у человека не сильно отличаются от того, что происходит у лягушки и других позвоночных, первичная полоска есть далеко не у всех. Она встречается только у птиц и млекопитающих, а вот у их общей предковой группы, рептилий, ее нет. А значит, можно предположить, что первичная полоска не обязательно необходима для того, чтобы гаструляция прошла успешно.
Во-вторых, первичную полоску можно считать реакцией на неравномерные натяжения и напряжения в зародыше. Их создает, например, желток у птиц и внезародышевые ткани у млекопитающих. К тому же, недавно появились работы, авторы которых изменили подвижность части клеток в курином зародыше и тем самым направили его гаструляцию по «лягушачьему пути». Таким образом, первичной полоски не образовалось, а гаструляция все равно произошла.
В-третьих, последствия гаструляции можно воспроизвести в пробирке, используя стволовые клетки. Из эмбриональных клеток можно вырастить любой клеточный тип взрослого организма, при этом экспрессия генов в них меняется так, как будто они развиваются внутри зародыша, но сам их пласт не воспроизводит морфологически стадию гаструляции. Кроме того, эмбриональные клетки можно заставить разделиться на три типа, как после гаструляции — получаются плоские гаструлоиды, концентрические кольца из трех клеточных типов. Иногда в гаструлоидах даже можно найти клетки, аналогичные тем, что встречаются в первичной полоске и запускают дифференцировку своих соседей.
Поэтому авторы статьи предлагают не рассматривать первичную полоску ни как признак гаструляции, ни как точку отсчета в индивидуальном развитии человеческих зародышей. Гаструляция, замечают они, может пройти и без нее. Основная роль первичной полоски, судя по всему, — нарушить радиальную симметрию зародыша и образовать передне-заднюю ось, а заодно отметить середину тела.
Из этого предложения есть несколько следствий. Во-первых, это может означать, что гаструляцию не стоит отслеживать по внешним признакам. Может оказаться, что на уровне клеток и работающих в них генов разделение на слои и типы начинается еще до появления первичной полоски. Впрочем, авторы работы не предлагают опираться на этот критерий, чтобы сдвинуть границу с 14 дней на более ранний срок. Они просто подчеркивают, что эта граница — условность, которая может не соответствовать внутренним процессам, происходящим в зародыше.
Во-вторых, если это предположение верно, то не обязательно полностью воспроизводить структуру первичной полоски in vitro, чтобы запустить гаструляцию в эмбрионе. Исследователи предсказывают, что рано или поздно ученые смогут перескочить стадию первичной полоски. До сих пор сделать это с модельным зародышем никому не удалось.
Ранее мы рассказывали о том, что эмбриологи смогли воспроизвести часть гаструляции in vitro — правда, при этом получались отдельно передняя и задняя области зародыша. А недавно исследователи заставили эмбрион прикрепиться к модельной стенке матки в пробирке — то есть вплотную подобрались к тому, чтобы имитировать имплантацию.
Полина Лосева
Чем страшны сказки о поседевших за ночь
Февральский ветер шуршит по иглам дугласовых пихт. С одной из колючих веток разноголосый дрозд с любопытством оглядывает сонный городок в штате Вашингтон. Дремать ему, впрочем, осталось недолго — на берегу реки найдено тело школьницы Лоры Палмер. В первом сезоне «Твин Пикса», пока агент Дейл Купер объедается вишневыми пирогами, отец убитой Лоры, юрист Лиланд Палмер, мечется по грани между горем и безумием. Наутро второго сезона он проснется белым как полярная лисица. Поседевший за ночь Лиланд обретет спокойствие причудливого характера: будет петь и танцевать, иногда срываясь на истерический хохот. Считается, что из-за сильного эмоционального потрясения, вроде того, что пережил Лиланд, можно резко растерять пигмент кожи и волос — меланин — и поседеть. Синдром, при котором волосы стремительно белеют, называют синдромом Марии-Антуанетты. Согласно легенде, перед казнью сверженная королева Франции тоже поседела за ночь. «Blanche par le malheur», побелевшая от горя, — написала Мария-Антуанетта на кольце, которое отправила принцессе де Ламбаль с несколькими прядями седых волос. Ей, как и Лиланду, было о чем понервничать. В историях и легендах внезапно поседевшие люди встречаются часто, а на страницах медицинских журналов — редко. К тому же эти клинические отчеты не всегда точны, а местами больше похожи на выдумки, чем на научные наблюдения. Один из немногих научных обзоров середины XX века едва набрал с полсотни случаев с 1827 года. Авторы исследования посвежее, 2013 года, отмечают, что из 196 случаев, описанных с 1800 года по настоящее время, лишь 44 были подтвержденными — то есть ученые и врачи лично наблюдали быстрое поседение. В остальных случаях авторы поверили на слово или пациенту, или коллегам. Десятилетиями туман из мифов позволял феномену нервной седины ускользать от исследователей. Но с 2010-х скепсис в отношении клинических случаев прошлого постепенно сменился живым научным интересом и исследованиями нервной седины у мышек в контролируемых лабораторных условиях. Сейчас мы знаем и про людей, что седина от стресса — не выдумка культуры. Пусть без преувеличений и не обошлось. Как можно поседеть от стресса? И раз уж это не сказки, чем опасна нервная седина? Седина — это нормально Нормой считается появление седых волос после 30 лет. К 50 годам у половины населения примерно половина волос [note=3142|будут седыми]. Ученые называют это «правилом 50/50/50». Как ни крути, если у вас есть волосы, возрастного, то есть физиологического, поседения вам не избежать. Волосы состоят из двух частей. Снаружи, над поверхностью кожи, виден стержень волоса — тонкая, гибкая нить из неживых, ороговевших эпителиальных клеток, кератиноцитов. Под поверхностью кожи находится корень из живых клеток, которые продолжают делиться. Корень окружен оболочкой из кожи и соединительной ткани — волосяным фолликулом. У основания волоса корень расширяется, образуя волосяную луковицу. В ней постоянно образуются новые клетки, которые затем ороговевают и склеиваются в волос. Цвет волосу придают два вида пигмента меланина. Эумеланин — темный пигмент, который отвечает за черный и коричневый цвет волос. Феомеланин — красноватый пигмент. В зависимости от количества и сочетания типов меланина меняется цвет волос: если много эумеланина, они будут темные; если эумеланина мало — светлые; если эумеланина мало, а феомеланина много — рыжие. (Подробнее о том, как баланс этих пигментов влияет на окрас кошек — в материале «Раскрашиваем котика».) Меланин синтезируют клетки меланоциты в луковице волоса. Меланоциты упаковывают пигмент в меланосомы — пузырьки внутри клетки. Затем пузырьки с пигментом переносятся по длинным ветвящимся отросткам меланоцита в эпителиальные клетки. Пока наверняка неизвестно, как именно меланосомы попадают в клетки волоса, но, скорее всего, меланоциты выделяют пузырьки с пигментом во внешнюю среду, а эпителиальные клетки их «заглатывают». Если же меланоциты начинают плохо работать, меланосом с пигментом в волосе становится совсем мало, их место занимают пузырьки без пигмента, и волосы становятся седыми. Считается, что изменение цвета волос жестко синхронизировано с фазами роста волоса. Каждый волосяной фолликул раз в несколько лет проходит через три этапа: Анаген — фаза роста. На этой стадии клетки в луковице волоса — кератиноциты и меланоциты — способны делиться. В каждый момент времени около 90 процентов волос находится в фазе роста. В среднем анаген длится от двух до пяти лет, но может длиться меньше, если вы нервничаете, плохо питаетесь или состарились.Катаген — фаза, в которую волосяная луковица отсоединяется от кровеносных сосудов и нервов. Она значительно короче анагена и длится от трех до шести недель. В катаген предшественники кератиноцитов и меланоцитов отмирают и перестают делиться.Телоген — фаза покоя. Через несколько месяцев после утраты кровяного снабжения оголодавший волос выпадет. В течение примерно недели фолликул пустует, а затем там постепенно начинают делиться стволовые клетки и зарождается новый волос. Начинается новый анаген. В ранней фазе роста в нижней части волосяного фолликула возникают две популяции стволовых клеток. Первая популяция — это зародыш волоса. Другая популяция мигрирует из области выпуклости (bulge, область между мышцей, поднимающей волос, и сальной железой). Эти стволовые клетки спускаются к основанию новой волосяной луковицы, и превращаются в зрелые меланоциты, которые займутся окрашиванием нового волоса пигментом. Считается, что если в фазе покоя предшественники меланоцитов успели сползти к волосяной луковице и волос уже начал расти каштановым, рыжим или черным, после этого ничто не заставит его поседеть. Количество меланоцитов и их способность накачивать волос цветом остаются практически неизменными весь цикл роста, а поседеть может уже фактически новый волос в новую волну миграции стволовых клеток. Поскольку с возрастом пул стволовых клеток истощается, в зародыш волоса попадает меньше предшественников пигментных клеток, они меньше пачкают эпителиальные клетки, и новый волос растет седым. Как правило, однажды побелев, волос уже не вернет себе цвет. Однако некоторые данные показывают, что процесс поседения все же чуть более гибкий: в исключительных случаях волос может начать седеть посреди фазы роста, какое-то время расти седым, а потом возвращать себе цвет. Так или иначе, волосы у Лиланда Палмера не могли поседеть за ночь. Седина не может появляться быстрее, чем растет волос. Согласно классической гипотезе появления седины, за ночь Лиланду пришлось бы синхронизировать фазы роста волос по всей голове до фазы покоя, облысеть и отрастить густую шевелюру новых седых волос. То есть ужать цикл выпадения и роста волоса с нескольких лет до одной ночи. При всей спорости безумных танцев, Лиланду за ночь такое не успеть. Более гибкий сценарий появления седины тоже не оставляет шансов: мы бы наблюдали постепенное отрастание седых волос, примерно по сантиметру в месяц, а не внезапные ночные метаморфозы. Мгновенное появление седины у мистера Палмера на экране и у сверженной королевы Франции в исторической легенде — абсурдное преувеличение. Но у любого абсурда есть причины, и поседеть быстрее обычного они действительно могли. Возможных причин — несколько. Вы лысеете Первый задокументированный случай внезапного побеления волос зафиксирован в Талмуде и датируется 83 годом нашей эры. Это история про раввина Элазара бен Азария, которого избрали председателем Синедриона, высшего суда в земле Израиля, в юном-преюном возрасте 18 лет. Жена юноши была обеспокоена, что тот выглядит слишком молодо для своей должности. К счастью, в тот же день у раввина появилось 18 рядов седых волос. Средневековый раввин Маймонид утверждал, что седина появилась из-за напряженной учебы: день и ночь бен Азария корпел над Торой, из-за чего ослаб и резко постарел. Это была первая из многих попыток объяснить, почему волосы могут быстро побелеть. В 1806 году французский химик и фармацевт Луи-Николя Воклен предположил, что выделяется некоторое таинственное вещество, которое растворяет пигмент. Спустя 60 лет немецкий физиолог Леонард Ландуа придумал другой механизм внезапного поседения: по его гипотезе, при внезапном поседении внутрь волоса почему-то проникают пузырьки воздуха, что придает ему белый оттенок из-за преломления света. А уже в начале XX века Илья Мечников допустил, что по волосам ползают особые иммунные клетки — пигментофаги, которые поглощают пигмент, а затем относят его к волосяной луковице и откладывают в соединительной ткани. И если предположения Мечникова и Воклена не нашли поддержки и были забыты, то у гипотезы воздушных пузырьков, напротив, даже в 1950-х были сторонники, пусть и использовали ее в качестве объяснения [note=3143|faux de mieux]. Сейчас внезапное поседение все чаще объясняют тем, что меняется цикл роста волос: анаген становится короче, волосы быстрее выпадают, а новые вырастают с нехваткой пигмента. Избыточное выпадение волос называют телогеновой алопецией (telogen effluvium), и начинается она через два-три месяца после воздействия какого-то триггера. Триггером могут быть лекарства (оральные контрацептивы, антидепрессанты, бета-блокаторы), травма, эмоциональный стресс или проблемы с диетой, вроде нехватки калорий, белка и жирных кислот в пище. Еще одна возможная причина — облучение ультрафиолетом. Трихологи даже замечают «эффект лета», когда количество пациентов с телогеновой алопецией увеличивается с июля по октябрь. Вряд ли Лиланд Палмер оголодал в Твин Пиксе, знаменитом своими вишневыми пирогами. Также маловероятно, что в феврале ему напекло голову. Но эмоциональный стресс налицо, как, впрочем, вероятно и использование антидепрессантов. Под клиническую картину не подходит лишь срок появления седины — с момента смерти Лоры к началу второго седого сезона проходит пара недель, а не два-три месяца, которые необходимы для манифестации заболевания. Пусть время в Твин Пиксе течет очень своенравно, но версию с telogen effluvium для Лиланда все же придется отбросить. Но вот в случае с Марией Антуанеттой на развитие седины после избыточного выпадения волос времени было более чем достаточно: между заключением в Тампль и восхождением на эшафот прошло более года. Кроме того, королеву в заточении почти никто не видел, а значит ее появление на казни поседевшей могло быть воспринято как произошедшее за одну ночь. Но у Лиланда был один недостаток: он нервничал. Вы нервничаете Помимо повышенной скорости выпадения волос стресс приводит к истощению популяции стволовых клеток, которые могли бы стать меланоцитами. Важную роль в поддержании работы волосяного фолликула играют окружающие его клетки: например жировой ткани и иммунные. Волосяные фолликулы также оплетены чувствительными нервами и нервами вегетативной нервной системы. При этом вегетативная нервная система — одна из главных при реагировании на стресс. В критические моменты ее симпатическая часть со своими медиаторами (адреналином, норадреналином и кортизолом) включает реакцию «бей или беги» ([note=3146| «fight or flight»]). В современном мире нам редко приходится использовать эту реакцию в прямом смысле, тем не менее симпатическая нервная система все равно активируется. Но нервы, которые находятся в тесном контакте с волосяным фолликулом, в ситуации стресса могут случайно нарушить его работу. Часть нервных окончаний симпатической системы примыкают к области выпуклости, где обитают предшественники меланоцитов. У мышек стресс приводит к выбросу адреналина из нервных окончаний у фолликула. Из-за адреналина стволовые клетки начинают слишком активно делиться и мигрировать. В конце концов в области выпуклости ничего не остается: популяция предшественников меланоцитов полностью истощается, растущий волос некому подкрасить и появляется седина. Особенности биологии волоса, его роста и пигментации отличаются у людей и других млекопитающих: например, циклы роста у грызунов, как правило, короче и чаще, чем у человека. Кроме того, разнится и возраст появления седины: в то время как шимпанзе и собаки отращивают седину старея, у самцов серебристоспиных горилл седина появляется после 12 лет как статусный аксессуар. Поэтому переносить результаты исследований с животных на человека следует с осторожностью. Хотя Лиланд — не мышка, у него вполне могла сбоить [note=3144|стрессорная ось]. Косвенно на роль активации симпатической нервной системы в появлении седины от стресса у человека указывают случаи пациентов, у которых иссечение симпатических нервов на уровне шейного или поясничного отделов приводило к тому, что седина, наоборот, появлялась позже обычного. И если во внезапно появившейся седине виновата избыточная активация симпатической нервной системы, то поседевшие волосы — меньшая из проблем организма. Как, впрочем, было и у мистера Палмера. Седина — не то, чем кажется Если нормальная физиологическая серебристая шевелюра ассоциируется со старостью, то появление значительной седины до 30 лет считается преждевременным. Как и стрессовое внезапное поседение в любом другом возрасте. Остается вопрос: если наступает преждевременная седина — означает ли это и преждевременное старение? Эпидемиологические исследования показывают, что ранняя седина связана с повышенным риском сердечно-сосудистых заболеваний, метаболическим синдромом, остеопенией (это уменьшение содержания минералов в костной ткани), болезнью Альцгеймера и даже тяжелым протеканием коронавирусной инфекции. Причем ранняя седина ухудшает прогноз по появлению заболеваний сердца до 40 лет даже сильнее, чем лишний вес или семейный анамнез. Так что ранняя седина, кажется, идет рука об руку с несвоевременным появлением возрастных болезней: сердце шалит, кости ломаются, голова начинает работать с перебоями. Возможно, дело в том, что седина — чувствительный маркер нарушений в организме. Каждый волосяной фолликул — микроорган, который спонтанно отмирает и регенерирует раз в три-пять лет. Но в условиях стресса фолликулу сложнее самовосстанавливаться: это может быть связано с повреждением клеток свободными радикалами или хроническим воспалением. Избыточная активация симпатической нервной системы — тоже одна из возможных причин. При этом стрессовое истощение задевает не только лишь волосы. Исследования показывают, что стресс и изменения в балансе возбуждения и торможения симпатической нервной системы ускоряют старение всего организма. Стресс приводит к нарушениям в метаболизме глюкозы и жиров, увеличению рисков развития ожирения, сахарного диабета, заболеваний печени и сердечно-сосудистых заболеваний. Седина у нервных мышек намекает, что стресс истощает популяцию стволовых клеток и делает ткани неспособными к регенерации. Наконец, избыточная активация симпатической нервной системы, из-за которой белеют волосы, вредит и мозгу. Из-за разбалансировки стрессорной оси происходит усиленный выброс норадреналина в мозге. В конечном счете это приводит к накоплению в нейронах неправильно свернутых тау-белков и гибели клеток — главных признаков болезни Альцгеймера. И пусть мы знаем наверняка, что в реальности Лиланд не мог бы поседеть за ночь, но можем с некоторой уверенностью предположить, что его нервная седина намекала на риски болезней сердца, метаболического синдрома и нейродегенерации. Особенно вероятным диагнозом кажется болезнь Альцгеймера, ведь помимо седины в клиническую картину нервно пританцовывающего героя «Твин Пикса» добавляется психоз, который часто встречается при болезни Альцгеймера и может возникать на ранней стадии нарушений умственных способностей или даже до этого симптома. Лиланд не успел выжить из ума из-за скоропостижной смерти. Вернее, очень даже успел, но не из-за болезни Альцгеймера, о которой намекала нервная седина. Первый сезон сериала изрядно разлохматил стрессорную ось мистера Палмера, и это привело к внезапному побелению. Но седина — лишь маленькая эстетическая неполадка по сравнению с букетом заболеваний, которые могли появиться у героя из-за стресса. Потому что если нормальная седина — это лишь маленькая старость, то нервная седина — маленькая внезапно нагрянувшая старость.