Биологи разработали систему CRISPRoff, которая способна направленно подавлять активность генов, не внося мутаций в ДНК. Механизм работы этого инструмента основан на эпигенетическом перепрограммировании, которое не зависит от CpG-сайтов метилирования в генах. Подавление активности генов CRISPRoff наследуется, что удалось показать на поколениях стволовых клеток, развивающихся в нейроны. Ученые также создали инструмент, способный восстановить активность генов после CRISPRoff и назвали его CRISPRon. Исследование опубликовано в журнале Cell.
От редактора
Изначально заметка называлась "CRISPR-инструмент отредактировал геном без разрывов ДНК", однако до этого уже существовали системы, основанные на "мертвом" Cas9 (dead Cas9) и способные вносить изменение в эпигеном. Но в таких работах, в отличии от обсуждаемой в заметке, не проверялось наследование изменений в поколениях делящихся клеток, что и отражает исправленный заголовок.
Система направленного геномного редактирования CRISPR/Cas9 — один из самых востребованных инструментов в биологических исследованиях. Такая система позволяет вносить разрывы в определенное место в геноме при помощи белка Сas9 в комплексе с направляющей РНК, что чаще всего используют в двух целях: «выключение» разорванного гена или встройка новой последовательности в разрыв. Получение моделей с неработающими генами позволяет исследовать их функции и изменять свойства организмов в зависимости от задач ученых. За открытие механизмов работы системы CRISPR/Cas в 2020 году присудили Нобелевскую премию исследовательницам Эммануэль Шарпантье и Дженнифер Дудне.
Несмотря на универсальность этого метода, его применение ограничено необходимостью вносить разрывы в последовательность ДНК, что часто приводит к мутациям в нецелевых районах генома и неправильному восстановлению ДНК в целевых. Так, например, скандально известный Хэ Цзянкуй, который впервые получил генно-модифицированных детей (а в последствии и тюремный срок), не смог контролировать точность работы CRISPR в своих экспериментах — в геномах близняшек оказались нецелевые мутации.
Биологи из университета Калифорнии создали CRISPR-механизм, который способен «выключать» гены без внесения разрывов и мутаций в ДНК. Он основан на эпигенетическом перепрограммировании — метилировании нуклеотидов (присоединении к ним метильной группы) таким образом, чтобы ген потерял сродство к ферментам транскрипции и перестал работать. Свою разработку биологи назвали CRISPRoff.
Как и в классическом CRISPR-инструменте, одним из компонентов в нем стал белок Cas9, но не обычный, а «мертвый» (deadCas) — то есть способный только связываться с нужным участком ДНК, но не вносить в него разрыв. К нему присоединили другие каталитические домены — метилтрансферразы. Таким образом, химерный белок смог метилировать нуклеотиды ДНК вокруг себя, подавляя активность генов. При этом уже через 10 дней после добавления белка к клеткам, его уже было невозможно обнаружить, хотя его эффект сохранялся до 15 месяцев исследования. Специфичность и эффективность работы системы подтвердило секвенирование РНК — у супрессированных генов практически не было транскиптов. Эффект CRISPRoff наблюдался и для генов, в которых не были аннотированы СpG-островки — двухнуклеотидные сайты в ДНК, по которым происходит естественное метилирование в клетке, то есть потенциально его можно использовать для любой последовательности в геноме.
Биологи также подтвердили, что метилирование CRISPRoff можно отменить. Для этого они создали похожий инструмент — CRISPRon. Этот белок также состоял из инактивированного Cas и фермента, но на этот раз им был деметилирующий агент. Чтобы проверить его работу, биологи использовали клетки, в которых уже был метилирован ген CLTA. Уже через десять дней после применения CRISPRon, в клетках восстановился нормальный уровень работы гена (p<0,0001).
Чтобы проверить, как эффект CRISPRoff сохраняется при дифференцировке индуцированных стволовых клеток (ИСК) в другие клеточные типы, биологи обработали их белком, после чего перепрограммировали в нейроны. Это один из самых распространенных методов получения нервных клеток для исследований, а сохранение метилирования в процессе дифференцировки — важное свойство для использования инструмента. Оказалось, нейроны действительно сохранили метильные метки на выбранных учеными генах.
На основе технологии CRISPR/Cas создают и другие системы. Так, например, недавно эффективность метода увеличили при помощи фотоиндукции, а также создали инструмент, который способен редактировать несколько генов одновременно и вырезать из них участки.
Анна Муравьева
Лучшие снимки конкурса European Wildlife Photographer of the Year 2025
24 октября German Society for Nature Photography (GDT) объявило победителей ежегодного конкурса European Wildlife Photographer of the Year, который существует уже четверть века. На этот раз жюри отметило 107 работ в восьми категориях и четырех специальных номинациях. Посмотрите на лучшие снимки этого года.