Американские инженеры разработали алгоритм управления несколькими дронами, объединенными в единый модуль для перевозки больших грузов. Для контроля над группой из нескольких мультикоптеров в жесткой сцепке с грузовым контейнером используется адаптивная система, которая учитывает и компенсирует тягу каждого из аппаратов. Авторы технологии считают, что она упростит логистику и позволит унифицировать применяющиеся для доставки дроны. Инженеры рассказали о работе на сайте института и отправили результаты на публикацию в журнал Journal of Aircraft.
Считается, что самый затратный этап перевозки товаров — «последняя миля», доставка заказа непосредственно получателю. Пока что каждую посылку носят по-отдельности многочисленные курьеры, но транспортные компании пытаются оптимизировать этот процесс при помощи автоматической доставки груза колесными роботами или летающими дронами.
Например, Amazon запустила службу доставки посылок колесными дронами непосредственно со склада. Другая концепция, которую продемонстрировала UPS, подразумевает перевозку большого количества посылок на грузовиках, которые для конечной доставки посылок клиентам по воздуху запускают дроны. Это повышает зону охвата курьерской службы, однако каждый грузовик способен перевозить лишь несколько беспилотников. С ростом масштаба доставок остро встает проблема унификации и обслуживания сотен и тысяч дронов — дешевле закупить оптом и обслуживать один тип стандартных аппаратов, чем поддерживать несколько разновидностей для доставки посылок различных размеров. Но в таком случае грузоподъемности стандартного дрона может не хватить, если потребуется доставить тяжелый груз.
Группа разработчиков из Технологического института Джорджии под руководством профессора Джонатана Роджерса (Jonathan Rogers) попыталась справиться с этими проблемами. Инженеры разработали алгоритм, способный управлять несколькими дронами, соединенными жесткой рамой. Это позволит унифицировать перевозки, доставляя несколькими стандартными мультикоптерами грузы, которые не способен поднять единственный небольшой аппарат. Таким образом, можно отказаться от использования более тяжелого и дорогого беспилотника.
Авторы утверждают, что если один из беспилотников в сцепке откажет, то разработанный алгоритм позволит остальным аппаратам адаптироваться, и либо доставить посылку по месту назначения, либо совершить безопасную посадку. В отличие от концепции модульного дрона-трансформера, которую несколько лет назад предложили в Японии, в проекте американских инженеров каждый БПЛА из состава сборки можно использовать и по отдельности, что решает проблему унификации аппаратов.
Для демонстрации технологии авторы прикрепили четыре небольших дрона к ящику весом в пять килограмм. Алгоритм успешно справился с задачей — дроны смогли поднять и перенести ящик в назначенное место, что авторы продемонстрировали в видеоролике. При этом, разработанный алгоритм поддерживает работу любого числа аппаратов в сцепке. Это позволяет повышать массу перевозимого груза кратно количеству используемых дронов.
Алгоритм получает данные о местоположении дронов и тяге роторов. С помощью этой информации оценивается вес доставляемого груза, центр масс конструкции и относительное расположение беспилотников. Алгоритм учитывает эти параметры и формирует управляющие команды для каждого дрона по отдельности.
Исследователи надеются в будущем дополнить технологию возможностью самостоятельной стыковки дронов с контейнером по инфракрасному наведению, чтобы людям не пришлось присоединять к нему каждый БПЛА вручную. Для этого авторы предлагают использовать одноразовую раму, которая устанавливается на контейнер и предусматривает стыковку до шести дронов. Аппараты самостоятельно закрепляются на раме, доставляют посылку по адресу, отцепляются и улетают обратно на грузовик. При этом рама после доставки остается на контейнере, а клиент может вернуть не подошедший товар — тогда дроны прилетят на вызов и заберут посылку.
Разработку технологий для доставки грузов на беспилотниках ведет множество инженерных коллективов. Например, в конце марта другая группа инженеров сообщила об успешных испытаниях дрона, который способен захватывать груз на лету. Разработчики снабдили беспилотник захватом в виде четырех гибких опор и научили его алгоритм управления подбирать с помощью этого захвата грузы.
Дмитрий Логинов
А также летать, ездить и самостоятельно прокладывать маршрут
Инженеры разработали робота-трансформера под названием Morphobot M4, который может ездить как четырехколесный ровер, летать как квадрокоптер, ходить как четвероногий робот и стоять вертикально, балансируя на двух ногах-колесах. Кроме того он способен комбинировать эти режимы, чтобы преодолевать встречающиеся на пути препятствия. Робот оснащен автономной системой навигации и может самостоятельно прокладывать маршрут, выбирая подходящий режим передвижения. Благодаря таким возможностям Morphobot сможет применяться для широкого спектра задач, оптимально расходуя энергию. Статья опубликована в журнале Nature Communications. Большинство из существующих сегодня типов роботов не универсальны и не могут передвигаться в любых условиях одинаково эффективно. К примеру, мультикоптеры тратят много энергии в полете и поэтому могут находиться в воздухе непродолжительное время, а колесные и ходячие роботы обладают более высокой энергоэффективностью, но ограничены передвижением по относительно ровной поверхности. Инженеры пытаются обойти эти ограничения через создание гибридных конструкций. Например, американские инженеры совместили квадрокоптер с ходячим двуногим роботом, а разработчики из Кореи собрали гибрид коптера с колесным ровером. Большинство подобных проектов объединяет один недостаток: часть конструкции робота, предназначенная для передвижения в одной среде, никак не используется при движении в другой, выступая лишь в качестве пассивного груза. Инженеры под руководством Мортезы Гариба (Morteza Gharib) из Калифорнийского технологического института решили создать гибридного робота, все части конструкции которого принимают участие в разных типах движения. В результате у них получился робот-трансформер Morphobot M4, который представляет собой гибрид квадрокоптера и четырехколесного робота. Его масса около шести килограмм, а многие детали выполнены из углеволокна и с помощью 3D-печати. В режиме колесного ровера длина робота составляет 0,7 метра, а ширина и высота 0,35 метра. Четыре колеса робота диаметром 0,25 метра расположены на концах балок, которые играют роль подвижных конечностей. Они могут отклоняться сервомоторами в двух направлениях продольно и перпендикулярно в сторону от корпуса. Колеса приводятся в движение отдельными электромоторами. При трансформации в квадрокоптер обода выступают в роли защитных бамперов для воздушных винтов, расположенных внутри колес с электромоторами в осях, а четыре конечности робота разворачиваются, направляя плоскости пропеллеров параллельно поверхности земли. Корпус робота в этом режиме поддерживается расположенными снизу посадочными опорами. Суммарная тяга всех четырех винтов составляет около девяти килограмм. Morphobot может комбинировать два основных режима, например, для того чтобы преодолевать препятствия, которые он не может переехать. Для этого роторы в одной части робота разворачиваются в полетный режим, а вторая пара конечностей продолжает опираться на колеса. Таким образом робот может забираться на крутые склоны с наклоном больше 45 градусов, затрачивая меньше энергии, чем при полноценном полете в режиме квадрокоптера. Также используя пару винтов только с одной стороны М4 может принять вертикальное положение, балансируя на двух колесах, напоминая при этом двуногий ходячий робот. В режиме ровера М4 может регулировать высоту корпуса относительно поверхности, выдвигая конечности с колесами вперед и назад. Это может пригодиться для преодоления препятствий с ограничением по высоте. Робот также может ходить как четвероногий, перебирая конечностями с колесами как ногами, это может пригодится для преодоления неровностей на пути. Помимо этого, М4 способен использовать конечности с колесами в роли манипуляторов, ухватывая и удерживая предметы с помощью колесных ободов. В качестве примера разработчики продемонстрировали, как робот удерживает таким образом небольшой шар, балансируя при этом на двух колесах в вертикальном положении. Morphobot может передвигаться автономно, трансформируясь в наиболее подходящий в текущей ситуации режим. Для низкоуровневого управления используются два отдельных микроконтроллера, которые отвечают за движения колес и конечностей в режиме ровера и за полет в режиме коптера. Навигация и планирование маршрута происходят с помощью компьютера Jetson Nano, который использует данные об окружении, поступающие со стереокамеры Intel RealSense. На борту также есть инерционный измерительный модуль, средства беспроводной коммуникации для удаленного управления и батарея емкостью 4000 миллиампер-час. https://www.youtube.com/watch?v=S4eQXXxUnNE По словам разработчиков, такие способности позволят использовать подобных роботов-трансформеров для широкого спектра задач, например, для поиска и спасения людей во время стихийных бедствий, или в качестве робота для исследования космоса. Ранее мы рассказывали о другом дроне-трансформере с необычной конструкцией под названием DRAGON, которого построили японские инженеры. Он состоит из нескольких сегментов, может менять форму прямо в полете, захватывать предметы, огибая их с двух сторон и поворачивать вентили.