Редактор оснований на основе системы CRISPR/Cas использовали для терапии прогерии Хатчинсона-Гилфорда — это самая известная из болезней ускоренного старения. В результате экспериментальные мыши прожили в два с лишним раза больше, чем их сородичи без лечения, а их аорта — которая сильнее многих других органов страдает от этой болезни — стала по некоторым показателям неотличима от аорты здоровых мышей. Побочным эффектом от терапии у нескольких животных стала опухоль печени, однако пока нет причин считать, что этот эффект будет воспроизводиться у людей, говорится в работе, опубликованной в Nature.
Дэвид Лю (David Liu) из Гарвардского университета известен как один из разработчиков системы CRISPR/Cas9 для редактирования генома. Но на этом достижении он не остановился, и с тех пор каждый год его команда показывает новые, усовершенствованные системы для переписывания ДНК. В 2017 году это были редакторы оснований — системы, которые позволяют точечно заменить одну «букву» в тексте ДНК на другую. В 2019-м это был метод праймированного редактирования, который, по словам создателей, работал точнее и безопаснее «обычной» системы CRISPR/Cas. В 2020-м Лю и его коллеги первыми научились редактировать ДНК внутри митохондрий (мы рассказывали об этом в материале «Терапия зла»).
Теперь группа Лю опубликовала отчет о применении одной из своих первых разработок против тяжелой наследственной болезни — прогерии Хатчинсона-Гилфорда. Она вызвана тем, что один из белков ядерного «скелета» — ламин А — получается длиннее положенного и из-за этого застревает в мембране клеточных ядер. Сами ядра от этого деформируются, а ДНК внутри них чаще ломается. Поэтому больные прогерией уже в раннем детстве страдают многими возрастными болезнями (например, облысением, артритом и атеросклерозом) и живут в среднем около 14 лет.
Причиной этой болезни служит точечная мутация в гене ламина А: вместо цитозина в одной из позиций оказывается тимин. Это классическая ситуация, в которой может помочь редактор оснований: модифицированная система CRISPR/Cas, которая не разрезает обе нити ДНК, а напрямую меняет «неправильный» нуклеотид. Для начала Лю и коллеги проверили свою систему на клетках соединительной ткани, взятых из организма пациентов с прогерией. Оказалось, что за десять дней их метод способен «починить» около 85 процентов клеток в культуре. При этом нежелательных промахов появилось мало: редактор оснований промахнулся меньше, чем в 0,1 процента случаев.
Тогда исследователи перешли к работе на мышах. Поскольку сами по себе мыши прогерией не болеют, ученым пришлось использовать трансгенных животных, которые несут в своих клетках дополнительные копии гена человеческого ламина А с характерными мутациями. Их геном редактировали in vivo: аденовирусный вектор с компонентами системы редактирования ученые вводили в кровь 3-дневным и 14-дневным животным. Во втором случае починка ДНК прошла более успешно — вероятно, потому что мыши были крупнее, чем на третий день жизни, и поэтому получали больше аденовирусных векторов.
В среднем удалось починить от 10 до 60 процентов клеток в зависимости от конкретной ткани (не все они отреагировали одинаково). Однако исследователи заметили, что в течение шести недель после инъекции количество отредактированных клеток в тканях выросло. Они предлагают объяснять это тем, что редактирование продолжается еще какое-то время после введения системы в клетку — или тем, что «исправленные» клетки становятся успешнее прочих и размножаются, выживая «сломанных» соседей из ткани.
Похожая ситуация сложилась и на клеточном уровне. Даже там, где эффективность редактирования оказалась невысокой — например, в жировой ткани 14-дневных мышей она составила всего около 4 процентов — доля мутантного белка упала на 31 процент. Авторы работы предполагают, что «исправленные» клетки начали активнее пользоваться своими генами, чем их мутантные соседи, и производить больше «здорового» белка — и поэтому концентрация мутантного белка в ткани стала ниже.
Наконец, на физиологическом уровне редактирование тоже оказалось эффективным. У мышей, которые получили укол на 14-й день жизни, толщина стенки аорты и количество мышечных клеток в ней — два главных показателя здоровья сосудов — достигли нормальных значений. И прожили эти мыши дольше положенного: если от нелеченной прогерии они умирали в среднем в 189 дней, то после инъекций на 3-й или 14-й день жизни — в 337 и 510 дней соответственно. Для лабораторной мыши это солидный возраст: у здоровых животных в это время начинается период старости.
Правда, у нескольких животных на вскрытии обнаружили опухоль печени. И авторы работы не исключают, что новообразования могли стать следствием лечения — если аденовирусный вектор встроился в геном в неположенном месте. Однако у людей, которые проходят генную терапию от других болезней с помощью аденовирусных векторов, до сих пор таких побочных эффектов не встречали. Поэтому есть вероятность, что этот эффект специфичен именно для мышей.
Несмотря на то, что авторы работы пока не предлагают переходить к испытаниям своего метода на людях, они отмечают, что у него есть несколько плюсов. Во-первых, он не требует редактирования генома на эмбриональной стадии — эти технологии пока остаются спорными (об этом мы писали в тексте «В будущее возьмут не всех»). Во-вторых, он позволяет вводить редакторы оснований через несколько лет после рождения (по словам исследователей, 14 дней для мыши соответствуют 5-6 годам у человека), а значит, ребенок успеет получить окончательный диагноз. В-третьих, эффект от такой терапии иногда оказывается непропорционально большим — как, например, в аорте, где 25 процентов отредактированных клеток позволяют полностью компенсировать дефекты в стенке сосуда. Это значит, что можно не гнаться за стопроцентной эффективностью. Наконец, Лю и коллеги полагают, что их технология может дать еще более выраженный результат, если его совмещать с другими методами лечения прогерии — например, с первым лекарством от прогерии, которое совсем недавно одобрили в США.
Полина Лосева
Благодаря лекарствам гормоны перестали мешать иммунитету бороться с опухолью
Японские ученые описали механизм, благодаря которому лекарства, блокирующие работу эстрогенов, подавили развитие опухолей, не имеющих альфа-рецепторов к эстрогенам. Анализ данных от пациенток с трижды негативным раком молочной железы и эксперименты на мышах показали, что антиэстрогенные препараты снижают иммуносуппрессивное действие эстрогенов в отношении противоопухолевых цитотоксических лимфоцитов. Использование антиэстрогенных препаратов у мышей с опухолями, нечувствительными к эстрогенам, помогло замедлить рост опухолей. Исследование опубликовано в журнале British Journal of Cancer. Эстрогены называют женскими половыми гормонами, но они влияют не только на созревание и работу женской половой системы, но и практически на все органы и системы мужского и женского организма, включая мозг, эпителии, костную ткань и иммунную систему. В эпителиальных клетках молочных желез и женской половой системы есть альфа-рецепторы к эстрогенам, регулирующие рост и дифференцировку в разные фазы менструального цикла. Такие же рецепторы есть и во многих опухолевых клетках: примерно три четверти раков молочной железы экспрессируют альфа-рецепторы, а блокада рецепторов и блокада выработки эстрогенов лежат в основе лечения пациенток (и пациентов). В течение последних 30 лет появляются наблюдения, согласно которым опухоли молочной железы, не экспрессирующие альфа-рецепторы, иногда тоже реагируют на лечение антиэстрогенными препаратами, но механизм этого феномена оставался неясен. Иммунологи и биоинформатики из Университета Хоккайдо во главе с Кэн-итиро Сэйно (Ken-ichiro Seino) описали механизм действия антиэстрогенных препаратов на опухоли, лишенные альфа-рецепторов. Для начала они оттолкнулись от датасета TCGA, в котором содержалась информация о транскриптоме трижды негативного рака молочной железы у 171 пациентки. Ученые выяснили, что чем выше активность гена HSD17B1 в опухоли (ген кодирует фермент, превращающий малоактивный гормон эстрон в активный гормон эстрадиол), тем меньше в опухолевых массах цитотоксических Т-лимфоцитов (r = −0,299, p = 0,00006). У пациенток с высокой экспрессией фермента болезнь протекала агрессивнее. Ученые смоделировали на мышах, как влияет высокий уровень эстрогенов на противоопухолевый иммунитет. Они вводили самкам мышей опухолевые клетки из двух линий, не имеющих альфа-рецепторов к эстрогенам (мышиный трижды негативный рак молочной железы и мышиный колоректальный рак). Половине животных ученые удалили яичники перед введением клеток. У таких мышей уровень эстрогенов был ниже, чем в контрольной группе, но выживаемость была лучше, а опухоли росли медленнее. Если мышам с опухолями и нормально функционирующими яичниками вводить препараты, подавляющие образование эстрогенов (анастрозол) или блокирующие альфа-рецепторы (тамоксифен, фульвестрант), то количество цитотоксических лимфоцитов в опухоли становилось выше, причем эффект не был связан с дополнительными рецепторами к гормонам, которые часто обнаруживают у трижды негативного рака. Лимфоциты, инфильтрирующие опухоль, становились активнее под действием лекарств: в опухоли повышался уровень интерферона гамма и цитотоксических молекул, вырабатываемых активированными лимфоцитами. Когда ученые попытались лечить мышей с трижды негативным раком молочной железы комбинацией химиопрепаратов и фульвестранта, то добавление антиэстрогенной терапии снижало скорость прогрессирования опухоли в 2,5-5 раз. Эксперименты на культуре клеток показали, что активация рецепторов к эстрогенам на лимфоцитах снижает их противоопухолевую активность — подавляет выработку клетками интерлейкина второго типа и активность сигнального пути JAK-STAT (о том, какое отношение он имеет к воспалению, мы рассказывали на примере мышечной ткани). Работа ученых из Университета Хоккайдо показывает: если у давно известного лекарства нет мишени в опухолевых клетках, то это не значит, что лекарство не будет эффективным. Плейотропные эффекты антигормональных препаратов могут быть полезны в иммуноонкологии, но пока рано говорить о том, что связь между эстрогенами и противоопухолевым иммунитетом окончательно расшифрована (в ряде случаев она, видимо, и вовсе работает в противоположном направлении). Тем не менее некоторые антиэстрогенные препараты уже целенаправленно исследуют в лечении эстрогеннегативных опухолей. В онкологии много примеров, когда врачи извлекают пользу из лекарства, которое на первый взгляд не должно было работать. Один из самых ярких примеров — талидомид, у которого в последнее время находят все больше положительных эффектов. О нелегкой судьбе соединения читайте в материале «Готов искупить».