Ученые из Гарварда придумали новый способ редактировать ДНК, а точнее — переписывать ее: они использовали вирусную обратную транскриптазу, чтобы вписать в ДНК нужный вариант последовательности. Метод праймированного редактирования (prime editing) позволяет исправлять любой тип мутаций: от точечных замен до вставок или делеций. Исследователи опробовали его на нескольких типах клеток человека и утверждают, что он работает точнее, чем стандартный CRISPR/Cas9 и редакторы оснований. Работа опубликована в журнале Nature.
В основе работы молекулярной системы CRISPR/Cas9 лежит разрезание ДНК: Cas9-нуклеаза вносит разрыв в обе цепи ДНК в нужном месте. Затем клетка может соединить концы разрыва (негомологичное соединение концов) или вставить на место разрыва «заплатку» (гомологичная репарация), позаимствовав материал со второй хромосомы или из предоставленной экспериментатором последовательности. Но двунитевые разрывы могут быть опасными для клетки и вызывать остановку деления или смерть, а способ их починки непросто проконтролировать.
В этом смысле более безопасными являются редакторы оснований — это вариант системы CRISPR/Cas, в котором фермент исправляет только одну «букву» в тексте ДНК, не создавая при этом двунитевых разрывов. Однако редакторы способны исправлять только определенные типы точечных мутаций (Ц→Т, Г→А, А→Г, Т→Ц) и бессильны против других (например, Ц→А или Г→Т).
Чтобы расширить возможности борьбы с мутациями, группа ученых из Гарвардского университета под руководством Дэвида Лю (David Liu) разработала новую стратегию — праймированное редактирование генов. Она не требует внесения двуцепочечных разрывов, а вместо направляющей РНК, которую использует CRISPR/Cas для наведения на цель, в нее входит удлиненная гидовая РНК для праймированного редактирования (prime editing extended guide RNA, pegRNA, пргРНК). Эта РНК выполняет сразу две функции: определяет область, где пройдет редактирование, и несет в себе информацию, которую нужно «вписать» в ген.
Механизм работы новой системы выглядит следующим образом:
Авторы нового метода оценили его эффективность на нескольких типах человеческих клеток. По их подсчетам, успешное редактирование происходит в 20-50 процентах случаев, а частота ошибочных вставок или делеций (инделов) — около 1-10 процентов. Исследователи отмечают, что их система работает эффективнее, чем классическая CRISPR/Cas9 — в аналогичных экспериментах она справилась только примерно в 10 процентах случаев. Кроме того, праймированное редактирование оказалось безопаснее: например, во взрослых нейронах оно вызвало лишь 0,58 процентов инделов, а CRISPR/Cas9 — 31 процент.
Важный плюс нового метода — его универсальность. «Переписывая» последовательность гена, ученые получили возможность устранить любую мутацию — будь то делеция, дупликация или точечная замена. Они проверили: система справляется с любыми заменами нуклеотидов и другими нарушениями последовательности гена. В частности, они исправили в модельных клетках человека мутации, ответственные за серповидно-клеточную анемию, нейродегенеративную болезнь Тея-Сакса и подверженность прионной инфекции. Авторы работы полагают, что их разработка может быть эффективна против 89 процентов патогенных генетических вариаций, которые значатся в базе данных ClinVar, — все они представляют собой небольшие, до 30 нуклеотидов, изменения в последовательности ДНК.
Споры о безопасности CRISPR/Cas9 и ее аналогов для клеток человека продолжаются. В 2018 году из журнала Nature Methods отозвали статью о высоком уровне нецелевого редактирования, к которому приводит использование этой системы. Тем не менее, клеточные терапии постепенно движутся к клиническому использованию. Первый шаг в эту сторону сделали в Китае, затем в Америке, а недавно CRISPR-отредактированные клетки впервые использовали для борьбы с ВИЧ-инфекцией.
Полина Лосева
Ученые впервые вызвали партеногенез геномным редактированием
Генетики из американских и британских университетов обнаружили, какие гены отвечают за факультативный партеногенез у дрозофил. Они внесли точечные изменения в мушиные гены, влияющие на текучесть мембран (Desat2), образование центриолей (Polo) и скорость пролиферации (Myc). Мухи-самки из созданной генетической линии успешно вступали в половое размножение, но были при этом способны к партеногенезу как минимум на протяжении двух поколений. Исследование опубликовано в журнале Current Biology. Партеногенез — развитие живых организмов из неоплодотворенной яйцеклетки — широко распространен среди животных. На филогенетическом древе чисто партеногенетические виды нередко соседствуют с практикующими «обычное» половое размножение. Иногда и вовсе удается описать спорадические случаи появления партеногенеза у отдельных представителей непартеногенетических видов. Следовательно, генетическая подоплека партеногенеза может возникать быстро по эволюционным меркам и должна быть в этом случае относительно несложной. Но конкретные молекулярные механизмы партеногенеза часто остаются нерасшифрованными. У мух, неспособных к партеногенезу, яйцо приостанавливается на стадии метафазы I мейоза, а дальнейшее развитие (завершение деления, отделение полярных телец и дальнейшие митотические деления) продолжается лишь после оплодотворения. Но встречаются и факультативно партеногенетические линии, в которых партеногенетические потомки составляют от десятых долей до десяти процентов популяции. Доктор Алексис Сперлинг (Alexis L. Sperling) из Кембриджского Университета с коллегами из американских университетов Мемфиса и Калифорнийского технологического исследовала механизм возникновения факультативного партеногенеза у мух вида Drosophila mercatorum. Генетики отобрали и секвенировали геномы и транскриптомы факультативно и облигатно партеногенетических штаммов D. mercatorum и сопоставили их между собой. При партеногенезе была изменена экспрессия 44 генов, связанных в основном с формированием центриолей и регуляцией клеточного цикла. Несмотря на то, что предки D. mercatorum и более изученной D. melanogaster разошлись более 40 миллионов лет назад, данные сравнительной геномики позволяют воссоздавать на более известном модельном объекте изменения, обнаруженные в геноме менее известного. Ученые воссоздали у D. melanogaster выявленные изменения активности генов, прибегая к CRISPR-редактированию генома, дупликациям генов, введению в геном генов антисмысловых РНК или энхансерных последовательностей. Самый высокий уровень партеногенеза был зарегистрирован в группах трансгенных D. melanogaster, у которых была повышена активность генов Polo (регулятор образования центриолей) или Myc (регулятор клеточного цикла), либо понижена активность генов Slmb (убиквитиновая лигаза, способствующая деградации Myc) и Desat2 (фермент, синтезирующий ненасыщенные жирные кислоты и регулирующий текучесть мембран). У каждого третьего облигатно партеногенетического яйца D. mercatorum полярные тельца или женские пронуклеусы вступали в митотические деления, давая начало эмбрионам (такая же картина наблюдалась в каждом восьмом случае факультативно партеногенетических линий). Количество полярных телец, способных спонтанно вступать в митоз (и тем самым формировать эмбрион) повышалось при повышении активности генов Myc и Polo. При этом многие мухи из партеногенетических линий после целлюляризации становятся недиплоидными (чаще всего, триплоидными) из-за нарушения образования веретена деления. Ученые получили 21 тысячу мух-самок D. melanogaster, гомозиготных по мутантным аллелям генов Polo, Myc и Desat2, и содержали их в отсутствии самцов. В общей сложности самки дали 143 взрослых потомка (в среднем 0,7 потомка на 100 мух), а у тех, в свою очередь, появилось два партеногенетических взрослых потомка второго поколения (1,4 процента от численности предыдущего поколения). Таким образом, линия животных, способных к партеногенезу на протяжении нескольких поколений, была впервые получена при помощи геномного редактирования. На основании полученных данных авторы предполагают следующий механизм факультативного партеногенеза. Повышение текучести мембран (цитоплазматической и мембраны эндоплазматического ретикулума) влияет на формирование центра организации микротрубочек и, следовательно, веретена деления. Его образование упрощает вступление в митоз. Такие изменения могли стать эволюционно выгодным приобретением при расселении мух в более холодные регионы (повышение текучести мембран, связанное со снижением активности десатураз, улучшает выживаемость мух при низких температурах). Впрочем, детали возникновения партеногенетических линий мух пока не до конца изучены — судя по диспропорции между небольшими изменениями в геноме и выраженным транскриптомным изменениями, часть изменений у партеногенетических D. mercatorum может носить эпигенетический характер (важность эпигенома для партеногенеза ранее была показана в эксперименте на мышах). О медийной шумихе вокруг возможности партеногенеза у человека и о генетических предпосылках к нему читайте в нашем материале «Половинка себя».