Астрономы смогли при помощи наземных радиотелескопов рассмотреть джет блазара PSO J0309+27, который существовал во времена, когда возраст Вселенной составлял менее одного миллиарда лет. Результаты наблюдений могут помочь разобраться в несоответствии количества предсказанных теоретически и наблюдаемых на практике блазаров на больших значениях красного смещения. Статья опубликована в журнале Astronomy&Astrophysics.
Блазары представляют собой активные ядра далеких галактик, в центре которых находится сверхмассивная черная дыра, окруженная аккреционным диском и ответственная за генерацию релятивистских cтруй плазмы (джетов), которые, в отличие от квазаров, направлены под малым углом (не более 20 градусов) к лучу зрения земного наблюдателя и не затеняются облаками пыли. Это делает блазары яркими объектами при наблюдениях в радиодиапазоне даже на больших значениях красного смещения, что позволяет исследовать процессы, шедшие в ранней Вселенной.
Существует проблема несоответствия, по крайней мере, на порядок между количеством наблюдаемых блазаров на больших значениях красного смещения (z>3) и их количеством, которые предсказываются космологическими моделями. Есть ряд гипотез, объясняющих это несоответствие, однако чтобы подтвердить или опровергнуть их астрономам нужны новые данные наблюдений за далекими блазарами.
Группа астрономов во главе с Кристианой Спингола (Cristiana Spingola) из Болонского университета в Италии опубликовала результаты анализа данных наблюдений за блазаром PSO J0309+27, проведенных при помощи наземного радиоинтерферометра VLBA (Very Long Baseline Array) и системы радиотелескопов VLA, кроме того ученые использовали данные наблюдений оптической системы Pan-STARRS и каталога AllWISE, созданного по результатам работы космического телескопа WISE.
Исследователи определили, что значение красного смещения для PSO J0309+27 составляет z=6,1, что означает, что этот объект существовал во времена, когда возраст Вселенной составлял менее одного миллиарда лет. Блазар был признан самым ярким в радиодиапазоне для объектов при z>6 и вторым по яркости в рентгеновском диапазоне для объектов при z>6 на сегодняшний день. В ядре блазара различимо два компонента, из него выходит джет, который простирается примерно на 1600 световых лет и обладает узловатой структурой.
Если PSO J0309+27 действительно является блазаром, о чем говорят свойства его рентгеновского излучения, то значение Лоренц-фактора его джета (Г) оказывается малым (менее 5), что означает, что джет виден под небольшим углом к лучу зрения земного наблюдателя (θ). В этом случае данные наблюдений согласуются с одной из идей, объясняющих недостаток наблюдаемых далеких блазаров. Однако ученые не могут исключить вариант того, что PSO J0309+27 виден под большим углом, что означало бы, что яркость рентгеновского излучения может быть усилена за счет обратного комптоновского рассеяния излучения блазара на фотонах реликтового излучения. Ожидается, что дальнейшие наблюдения за этим блазаром, а также поиск новых подобных объектов помогут лучше разобраться в проблеме.
Ранее мы рассказывали о том, где был найден самый далекий блазар, чем оказался первый известный источник нейтрино сверхвысоких энергий и как Телескоп горизонта событий получил самое детальное изображение джета блазара 3C 279.
Александр Войтюк
Экзопланета находится близко к красному карлику AU Микроскопа
Астрономы при помощи телескопа «Хаббл» выявили переменность потери нейтрального водорода атмосферой горячего нептуна, который находится на краю «пустыни нептунов» и обращается по близкой орбите вокруг молодой звезды AU Микроскопа. Предполагается, что это может быть связано с зависимостью оттока газа из атмосферы от активности звезды. Статья опубликована в The Astronomical Journal. «Пустыней нептунов» планетологи называют наблюдаемые дефицит экзопланет размером с Нептун и короткими орбитальными периодами (менее трех дней). Предполагается, что такие планеты изначально представляют собой тела с твердым ядром и обширными газовыми оболочками, которые быстро эволюционируют за счет миграции ближе к звезде и потере атмосферы. Последний процесс, в свою очередь, может протекать в двух вариантах — за счет фотоиспарения атмосферы под действием высокоэнергетического излучения звезды или разогрев и убыль атмосферы за счет выделения тепла со стороны остывающего ядра планеты. Группа астрономов во главе с Китли Рокклиффом (Keighley E. Rockcliffe) из Дартмутского колледжа в Ганновере опубликовала результаты наблюдений за динамикой атмосферы горячего нептуна в системе звезды AU Микроскопа при помощи космического телескопа «Хаббл». AU Микроскопа представляет собой звезду до главной последовательности, которая находится в 31,9 световых года от Солнца. Этот молодой (23 миллиона лет) красный карлик относится к группе Беты Живописца, имеет массу 0,5 масс Солнца, а также обладает околозвездным диском и открытым в 2020 году горячим нептуном AU Mic b, который стал первой молодой экзопланетой с известным значением плотности. AU Mic b характеризуется орбитальным периодом 8,46 дня и радиусом 4,19 радиуса Земли, экзопланета попадает на край «пустыни нептунов» и по расчетам может терять атмосферу. В системе есть еще две более дальние экзопланеты, а также кандидат в четвертую экзопланету. «Хаббл» вел спектроскопические наблюдения за AU Mic b в дальнем ультрафиолетовом диапазоне во время двух событий транзита планеты по диску звезды 2 июля 2020 года и 19 октября 2021 года. В эти моменты излучение водорода в линии Лайман-альфа от родительской звезды с высокой вероятностью будет взаимодействовать с нейтральным водородом, утекающим из верхних слоев атмосферы экзопланеты, и частично поглощаться им, что отразится в спектрах. Влияние околозвездного диска в этих наблюдениях может не учитываться, так как он беден газом. Во время первого транзита следов нейтрального водорода вблизи экзопланеты обнаружено не было, однако во время второго транзита было обнаружено облако водорода, движущееся впереди AU Mic b, со столбцовой плотностью 1013,96 частиц на квадратный сантиметр. Облако превратилось в хвост с длиной 1,39 радиуса Солнца, высотой 0,32 радиуса Солнца, при этом скорость движения части газа увеличилась и составила 61,26 километров в секунду в радиальном направлении от звезды. Ученые предполагают, что такое необычное поведение атмосферы можно объяснить за счет того, что геометрия оттока газа от планеты меняется в зависимости от интенсивности звездного ветра, который формирует из облака хвост, а также зависеть от вспышек на звезде. Кроме того, нейтральный водород мог быть фотоионизирован высокоэнергетическим излучением за 44 минуты, что сделает его временно недоступным для наблюдений. Ранее мы рассказывали о том, как CHEOPS подтвердил открытие двух экзопланет у «долины субнептунов».