Распад заряженного B-мезона не вписался в Стандартную модель

Wikimedia Commons
Физики нашли отклонения от Стандартной модели в распаде заряженного B-мезона на каон и мюонную пару в рамках эксперимента LHCb на Большом адронном коллайдере. Ученые увидели расхождения с теорией в угловых распределениях рождающихся в распаде частиц, похожие отклонения ранее наблюдались в аналогичном распаде нейтрального B-мезона. Считается, что подобные аномалии могут оказаться ключом к Новой физике, так как в них могут содержаться следы еще не открытых тяжелых элементарных частиц. Доклад LHCb опубликован на сайте эксперимента.
Стандартная модель — это наиболее точная доступная физикам теоретическая конструкция для описания многообразия элементарных частиц и их свойств. С подтверждением существования бозона Хиггса в 2012 году завершилось экспериментальное обнаружение всех предсказываемых этой моделью элементарных частиц, а внимание ученых переключилось на попытки найти физику за ее пределами. Объясняется это тем, что в Стандартной модели нет места темной материи, о существовании которой мы можем косвенно судить по наблюдаемому эффекту скрытой массы во вселенной. Не объясняет она и наблюдаемую асимметрию между количеством материи и антиматерии. Таким образом, видна необходимость поиска более полной теории в рамках физики элементарных частиц и их взаимодействий.
Новая физика может заключаться в существовании еще не открытых элементарных частиц, однако пока что не совсем ясно, на каком энергетическом масштабе их стоит искать. Есть надежда на то, что такие экзотические частицы могут напрямую рождаться на Большом адронном коллайдере, однако пока что физики не наблюдают подобных событий. Кроме того, квантовая теория поля не запрещает рождение тяжелых виртуальных частиц даже если их масса превышает энергетический порог ускорителя. В таком случае об их существовании можно было бы судить косвенно, а именно по отклонениям от теоретических предсказаний параметров распада известных нам частиц. Такой подход существенно расширяет диапазон масс, в котором физики могут увидеть следы еще не открытой элементарной частицы, а опирается он не столько на энергию ускорителя, сколько на точность используемых детекторов.
Большой потенциал на протекание подобных процессов у редкого распада b-кварка на s-кварк и мюонную пару. Обусловлен этот потенциал тем, что в таком распаде происходит смена аромата кварка, а это разрешено только Стандартной моделью с добавлением пертурбативной поправки (внедрение которой и уменьшает вероятность такого канала). Описывается же данный распад с помощью двух различных диаграмм Фейнмана: пингвин-диаграммы и коробчатой диаграммы. Изучение похожих распадов со сменой аромата позволило предсказать существование c-кварка за 10 лет до его прямого обнаружения, а нарушение CP-инвариантности в распадах нейтральных каонов привело к предсказанию существования b-кварка и t-кварка. На Большом адронном коллайдере, в свою очередь, рождается множество B-мезонов (в составе которых есть b-кварк), в редких распадах которых физики надеются увидеть следы Новой физики.
Теперь же следы Новой физики нашли и в аналогичных распадах заряженного B-мезона, причем в тех же характеристиках, что и в случае нейтрального B-мезона. Ученые изучали специально сформированные выражения наблюдаемых величин, которые характеризовали угловые распределения продуктов распада B-мезона и слабо зависели от формфакторов частиц (чтобы минимизировать влияние физики, с помощью которой описывается наблюдаемый распад). Зависимость от квадрата инвариантной массы мюонной пары для одной из этих наблюдаемых, которая носит название P5’, оказалась далека от предсказаний Стандартной модели.
B-мезон действительно одна из наиболее богатых на следы Новой физики частиц: недавно в его осцилляциях нашли нарушение CP-инвариантности. А о других последних результатах работы Большого адронного коллайдера мы сообщаем в теме «Второй сезон Коллайдера».
Никита Козырев