Южнокорейские инженеры создали механический аналог языка хамелеона, который способен почти мгновенно хватать им насекомых и притягивать их к себе. Устройство состоит из заводной пружины, которая сначала резко выдвигает металлическую ленту вперед, а затем тянет ее назад с помощью сцепления, которое может перемещаться между двумя приводными дисками. Они продемонстрировали, что захват способен полностью выдвинуться и вернуться обратно менее чем за 550 миллисекунд, а его масса достаточно мала для установки на популярный квадрокоптер. Статья опубликована в журнале IEEE Robotics and Automation Letters.
Дроны все чаще используются не только для съемки, но и для доставки небольших посылок. Например, их удобно использовать для быстрой доставки крови и других материалов для медицинского анализа из одной клиники в другую. При этом до сих пор у дронов есть большая проблема с временем полета, которое, как правило, составляет около получаса. А поскольку дрон-доставщики либо зависают, либо садятся для забора и выдачи груза, на это впустую тратится существенная часть емкости аккумулятора. Недавно японские инженеры показали проект станции, которая нацепляет на летящий без остановки дрон посылку, подстраиваясь под его траекторию, но для применения такого метода забора и сброса груза нужно модифицировать наземную инфраструктуру.
Ли Дон-Чжун (Dong-Jun Lee) и Чжон Гван-Пхиль (Gwang-Pil Jung) из Сеульского национального университета науки и технологий создали прототип захвата, который работает с высокой скоростью и при этом имеет достаточно малый вес, чтобы быть установленным на типичный квадрокоптер. Разработчики рассказали, что при создании механизма они вдохновлялись языком хамелеона — он способен вытягиваться на расстояние в полторы длины тела животного, причем со скоростью до трех с половиной метров в секунду. Благодаря этому добыча не успевает среагировать на атаку. Ключевая особенность языка и созданного авторами механизма заключается не только в скорости поступательного движения, но и в том, что после достижения цели они почти с такой же скоростью и почти без задержки возвращаются обратно.
Инженеры реализовали быструю скорость при движении в обе стороны благодаря применению двух приводов и перемещаемого между ними сцепления. В центре располагается металлическая лента рулетки, скручивающаяся в спираль. По бокам от ленты расположены два прижимающихся колеса-привода. А между этими колесами установлено подвижный блок с заводной спиральной пружиной. Благодаря тому, что он прикреплен к актуатору сбоку, он может перемещаться из стороны в сторону и соприкасаться с шестернями одного из двух приводов, тем самым определяя направление движения ленты. Это позволило не использовать две отдельные спирали или два мотора, а просто переключать один и тот же блок между приводами.
Прототип захвата имеет массу 117,5 грамма и размеры 12 на 8,5 на 8,5 сантиметра. Инженеры протестировали его, отслеживая перемещения с помощью высокоскоростной камеры. Результаты теста показали, что захват способен вытянуться на расстояние 80 сантиметров и вернуться обратно, потратив на этом менее 550 миллисекунд, и при этом имея на конце груз массой 30 граммов. Помимо стационарных тестов разработчики также показали несколько первых полетов серийного квадрокоптера с закрепленным и работающим прототипом захвата.
Инженеры и раньше подсматривали решения для дронов в живой природе. Например, в 2018 году разработчики из США и Швейцарии создали пару дронов, способных открывать двери. Один из них прилипает к гладкой поверхности двери с помощью искусственного аналога лапки геккона и нажимает на ручку двери, а второй зацепляется за пол с помощью шипов и тянет дверь за трос.
Григорий Копиев
Гексакоптер оснащен двумя взлетно-посадочными платформами для квадрокоптеров
Инженеры из Сколтеха разработали гибридный гексакоптер MorphoLander, который выступает в роли передвижного аэродрома для дронов меньшего размера. MorphoLander не только летает, но и может ходить по неровной поверхности при помощи четырех ног. В верхней части корпуса расположены две взлетно-посадочные платформы для микродонов. Дрон может пригодиться для инспекции объектов и поиска пострадавших во время стихийных бедствий, говорится в препринте на arXiv.org. При поддержке Angie — первого российского веб-сервера Дроны отлично подходят для выполнения задач поиска, инспекции и мониторинга, но потребляют много энергии и не могут долго находиться в полете. Одним из способов преодолеть это ограничение стала разработка дронов гибридной конструкции, которые могут не только летать, но и передвигаться по земле, например, с помощью колес или ног. Несмотря на то, что такой подход позволяет продлить время работы за счет менее энергозатратного способа передвижения по поверхности, продолжительность полета гибрида и его эффективность часто снижается из-за дополнительного веса. Инженеры под руководством Дмитрия Тетерюкова (Dzmitry Tsetserukou) из Сколтеха предложили использовать громоздкий дрон в качестве носителя для дронов поменьше. Тогда большой дрон выступает в роли передвижного «улья», который в нужный момент выпускает рой маленьких дронов, способных более эффективно выполнить задачу на большой территории за счет совместной работы. Разработанный прототип под названием MorphoLander представляет собой гексакоптер с четырьмя ногами, каждая из которых имеет три степени свободы. С их помощью дрон может передвигаться по неровной поверхности. Масса гибрида немного больше 10 килограмм. Встроенного аккумулятора хватает на 12 минут полета. Сверху на корпусе закреплены две посадочные платформы диаметром 20 сантиметров, на которые могут садиться микродроны. Чтобы микродронам (инженеры использовали Crazyflie 2.1 массой 27 грамм) было проще садиться на MorphoLander, материнский дрон с помощью алгоритма стабилизации старается удерживать горизонтальное положение платформ, подстраивая высоту ног под неровности поверхности. Посадка микродронов происходит под управлением алгоритма машинного обучения, его обучение с подкреплением проходило в симуляторе на платформе игрового движка Unity, который позволяет имитировать физику, с использованием пакета машинного обучения Unity ML Agents. Обученный алгоритм посадки затем испытали в трех сценариях с участием реальных дронов. В первом два микродрона должны были взлетать с расстояния полутора метров от MorphoLander и затем садиться на его платформы. Среднее значение отклонения от центра платформы в этом сценарии составило всего около 5,5 миллиметра. Во втором сценарии микродроны должны были садиться на материнский дрон, стоящий на неровной поверхности. В этом случае ошибка возросла и составила 25 миллиметров. Третий сценарий имитировал реальное применение: микродроны взлетали с платформ, в то время как MorphoLander отходил от места взлета на некоторое расстояние, после чего микродроны должны были сесть обратно. Среднее значение отклонения от центра 20-сантиметровой платформы составило 35 миллиметров. В будущем инженеры планируют увеличить точность и устойчивость алгоритма управления микродронами за счет контроля тяги отдельных винтов. https://www.youtube.com/watch?v=fV8_Ejy81s8&t=1s Совместная работа помогает роботам справляться с более трудными задачами. К примеру японские инженеры разработали систему из работающих в паре дрона и наземного робота. Они соединены друг с другом тросом, что позволяет наземного дрону взбираться на более крутые подъемы. Для этого дрон закрепляет трос на вершине, после чего наземный робот натягивает его с помощью лебедки и поднимается наверх.