Китайские физики придумали и экспериментально реализовали квантовый вариант игры в го. Они показали, что множество возможных позиций в такой игре значительно больше, чем у классического аналога. Благодаря своей сложности квантовое го может стать одним из перспективных кандидатов для демонстрации квантового превосходства. Препринт статьи доступен на arXiv.org.
В 2016 году программа AlphaGo, которая использует алгоритмы машинного обучения, обыграла Ли Седоля, а затем и Кэ Цзе — сильнейших игроков в го. На тот момент казалось, что обработать такое огромное количество информации и обыграть профессионала просто невозможно. Подробнее об этом читайте в материале «Го: речь поражения».
Ученые под руководством Сань Минь Цзинь (Xian-Min Jin) из Научно-технического университета Китая решили увеличить и без того большое число возможных позиций игры с помощью квантовой механики. Такая задача становится интересной не только с точки зрения возможностей машинного обучения, но и с точки зрения квантовых технологий. Она может быть слишком сложной для классического компьютера, что дает возможность квантовым вычислениям продемонстрировать свое превосходство.
В классическое го играют камнями двух цветов — черного и белого. Два игрока по очереди выставляют камни на пересечения клеток игрового поля размеров 19 на 19 (возможны варианты 9 на 9, 13 на 13). Цель игры — отгородить своими камнями территорию больше, чем у соперника. Дополнительные очки можно получить, если на захваченной территории есть камни противника.
Авторы предложили новую версию игры с использованием квантовой суперпозиции и измерений. В квантовом го появляется возможность ставить камень сразу в два разных места доски. Игрок выбирает две позиции, в которых может находиться камень и указывает их. С этого момента и до того, как этот камень будет измерен, он находится в состоянии суперпозиции. То есть с определенными вероятностями он может быть обнаружен в одном или другом положении. Даже игрок, который поставил этот квантовый камень не знает, где именно окажется камень после измерения. Измерение в квантовой механике заставляет квантовый объект выбрать одно из двух состояний (сколлапсировать). В данном случае после измерения квантовый камень превращается в классический и занимает только одно место на доске. Измерение камня происходит тогда, когда на соседнем пересечении появляется другой камень.
Такая вариация игры добавляет в нее элемент случайности и значительно увеличивает множество возможных расстановок. Помимо этого усложнить игру можно и другим способом: скрывать часть информации об игре от участников. В квантовом го можно предоставить игроку самому выбирать вероятности положения камня и не говорить о них сопернику. В таком случае игра может быть сведена к классическому го, если каждый раз одному из положений присваивать единичную вероятность.
В исследовании своей задумки авторы пошли дальше и создали экспериментальный прототип игры. Для этого они использовали источник пар запутанных фотонов, которые измерялись с помощью однофотонных детекторов. Каждое измерение в игре производилось над реальной квантовой системой, коллапс которой говорил о том, куда необходимо поставить измеряемый камень. Такая оптическая схема позволяет реализовывать и вариант игры со скрытой информацией.
Простейшая модель игры на доске 3 на 3 показала, что множество позиций для квантового го значительно больше, чем для классического. Кроме того, квантовое го оказалось сложнее не только своего классического аналога, но и других недетерминированных игр и игр со скрытой информацией. Благодаря своей сложности новая игра может стать полем для экспериментов в области классических и квантовых алгоритмов.
Пока программы на основе алгоритмов машинного обучения показывают успехи в соревновании с людьми. Так, ученые из DeepMind разработали алгоритм AlphaStar для игры StarCraft 2, который обыграл 99,8 процента игроков в одном турнире. Покер тоже не остался без внимания: искусственный интеллект Libratus выиграл у профессиональных игроков в 20-дневном покерном турнире. А новая версия AlphaGo Zero самостоятельно научилась играть в шахматы и сёги.
Оксана Борзенкова
Для этого физики косо сталкивали восемь плазменных струй
Британские и американские физики создали лабораторный аналог аккреционного диска, который возникает в космосе при падении газа на массивные объекты, например, черные дыры. В новом опыте, в отличие от предыдущих исследований, отсутствовали какие-либо стенки или ограничения для потоков — их закручивание происходило за счет нецентрального столкновения восьми плазменных струй. Плазменное кольцо продемонстрировало стабильность, что позволит в будущем исследовать роль магнитного поля в аккреции вещества. Исследование опубликовано в Physical Review Letters. Аккреционные потоки газа вокруг массивных тел встречаются во Вселенной довольно часто. Свет, испускаемый аккреционным диском, может свидетельствовать в том числе и о существовании черной дыры. Поведение газа, падающего на черную дыру, вызывает у исследователей множество вопросов, ответы на которые они добывают преимущественно теоретически. Лабораторные попытки понять физику аккреционного диска тоже существуют. Для этого физики создают потоки водно-глицериновых растворов или металлических расплавов в магнитном поле. Другой способ основан на подаче электрического тока на края холловской плазмы, удерживаемой постоянными магнитами. Недостатком всех этих методов остается наличие жестких границ, которые отсутствуют в космических процессах и искажают моделирование. Группа физиков под руководством Сергея Лебедева (Sergei Lebedev) из Имперского колледжа Лондона вместе с коллегами из США провели эксперимент, лишенный этого недостатка. Он заключался в косом сталкивании восьми плазменных струй, которые закручивались в кольцо. Их движение при этом напоминало движение вещества в аккреционном диске массивного тела. В эксперименте также образовывались характерные плазменные струи, перпендикулярные плоскости вращения. Установка физиков состояла из алюминиевых проволок толщиной 40 микрометров, расположенных в серединах ребер правильного восьмиугольника. Ученые пропускали через них импульсы большого тока (до 1,4 мегаампера на пике), что приводило к нагреву и абляции вещества. Магнитные поля формировали абляционные потоки и направляли их в середину установки, слегка отклоняя от центра. Столкновение потоков вещества формировало его в кольцо диаметром шесть миллиметров. Оно существовало не более 210 наносекунд, за время которого плазма делала от половины до двух оборотов. Физики следили за ее образованием и развитием в оптическом и экстремально-ультрафиолетовом диапазоне, что позволило исследовать распределение скоростей. Изображения показали, что плазменное кольцо стабильно в течение срока жизни, а само вращение происходит в квазикеплеровском режиме. Авторы также наблюдали плазменную струю, порожденную из вращающегося плазменного столба осевыми градиентами теплового и магнитного давления. Скорость вещества в ней составила 100±20 километров в секунду. Малый угол расходимости — 3±1 градус — свидетельствовал об отсутствии эффектов нестабильности. Струю также окружал плазменный ореол. В будущем авторы планируют продлить время жизни кольца за счет более долгих абляционных импульсов, для чего им потребуется использовать более толстые проволоки. Они убеждены, что замена алюминия на другие материалы позволит контролировать различные параметры магнитнодинамического потока. В будущем это позволит в лаборатории приблизиться к условиям, возникающим в астрофизических процессах, и понять роль нестабильности магнитных полей в аккреции вещества. Аккреционный диск — это не единственное явление, связанное с черными дырами, которое физики пытаются воспроизвести в лабораторных экспериментах. Ранее мы рассказывали, как течение воды в сливе раковины помогает изучать квазисвязанные состояния черных дыр, и как в конденсате Бозе — Эйнштейна подтвердили тепловой спектр излучения Хокинга.