Ученые обнаружили связь между показаниями сейсмографов и интенсивностью полярного сияния на территории Аляски. Во время полярных сияний в 2019 году, за которыми наблюдали с помощью магнитометров и камер всего неба, сейсмографы одновременно зарегистрировали продолжительные сейсмические волны. Выявленная закономерность может позволить в разы расширить систему исследования полярного сияния и динамики магнитного поля Земли. Статья опубликована в журнале Seismological Research Letters.
Полярное сияние — эффект красочного свечения верхних слоев атмосферы, возникающий при столкновении солнечного ветра с магнитосферой. Заряженные частицы в солнечном ветре перенаправляются и ускоряются в магнитном поле Земли, достигая плотных слоев атмосферы в близких к магнитным полюсам областях. Там они сталкиваются с атомами и молекулами в составе атмосферы и переводят их в возбужденное состояние, а в процессе релаксации и рождается свет полярного сияния.
Часто вместо того чтобы возбудить атомы или молекулы солнечные лучи ионизируют их, что меняет плотность заряженных частиц в атмосфере и проводит к изменению ее удельной электропроводности. В сочетании с электрическими полями, которые часто возникают в магнитосфере во время полярного сияния, это приводит к появлению существенных токов в ионосфере. Они, в свою очередь, порождают магнитные поля, которые и детектируют исследователи полярного сияния как возмущения условно стабильного магнитного поля Земли с помощью магнитометров.
Именно к этим колебаниям магнитного поля и оказались чувствительны мобильные сейсмографы, которые установили на всей территории Аляски в 2017 году. У мобильных сейсмографов, в отличие от стационарных, нет магнитной защиты. Без нее ферромагнитные составляющие сейсмографов оказываются чересчур восприимчивы к магнитным штормам, провоцируя тем самым регистрацию волн, которые на самом деле никак не связаны с сейсмической активностью.
Но недочет в проектировании сейсмографов оказался на руку ученым, которые изучают полярное сияние. Их интересуют как раз магнитные поля, однако для таких исследований на территории Аляски установлено всего 13 магнитометров против более чем 200 сейсмографов, чувствительным к колебаниям магнитосферы Земли. Помимо этого для наблюдения за ночным небом ученые используют камеры всего неба, но и их в Аляске установлено всего 6.
Карл Тэйп (Carl Tape) из Аляскинского университета в Фэрбенксе продемонстрировал, что чувствительные к магнитному полю сейсмографы могут служить инструментом для наблюдения за полярным сиянием. Оказалось, что с момента установки новых сейсмографов многие сильные полярные сияния видны в сейсмических данных как слабое вертикальное колебание с большим периодом в 40–800 секунд. Таким образом, о произошедшем полярном сиянии можно судить по данным не только магнитометров и камер всего неба, но и по показателям сейсмографов, однако точную зависимость данных этих приборов авторам еще предстоит получить.
Ученые утверждают, что обнаруженная закономерность может помочь существенно улучшить пространственное разрешение наблюдений за магнитосферой на территории Аляски. Тем не менее, авторы указывают на качественный подход своего исследования обнаруженной корреляции и считают, что о применении такой методики в реальных наблюдениях говорить еще рано.
В работе также отмечается низкая точность такого подхода в сравнении с уже используемым оборудованием, поэтому ученые надеются на расширение сети магнитометров. Это позволит не только улучшить условия для изучения магнитосферы, но и справиться с чувствительностью сейсмографов к колебаниям магнитного поля: если магнитометр установлен достаточно близко к сейсмографу, то по его данным можно понять, какая зарегистрированная сейсмическая активность является лишь следствием магнитного воздействия.
Физики исследуют полярное сияние не только на нашей планете: ранее мы писали про похожий эффект на Юпитере. Как выглядит вполне земное полярное сияние над Кольском полуостровом можно посмотреть тут.
Никита Козырев
Он распался на кислород <sup>24</sup>O и четыре нейтрона
Японские физики синтезировали самый тяжелый на сегодняшний день изотоп кислорода 28O с магическим числом и нейтронов, и протонов. Он оказался нестабильным, несмотря на предсказанные для него магические свойства, и моментально распадался на четыре нейтрона и кислород 24O. По мнению авторов статьи в Nature, эти результаты указывают на сложную структуру нейтронной оболочки 28O с близкими по энергии возбужденными состояниями. Стабильность изотопов физики описывают разными теоретическими моделями. В частности, некоторые из них предсказывают высокую стабильность изотопов с определенным — магическим — числом протонов и нейтронов. Для протонов магическими являются числа Z = 2, 8, 20, 50, 82, 114, 126, а для нейтронов — числа N = 2, 8, 20, 28, 50, 82, 126. В атомах с такими числами нейтронные и протонные оболочки ядра полностью заполнены, а основное и возбужденные состояния сильно отличаются по энергии — это приводит к повышенной стабильности ядра. Особенно устойчивыми являются дважды магические ядра, в которых одновременно заполнены и протонная, и нейтронная оболочки — например, самый распространенный изотоп кислорода 16O. Для кислорода также известны более тяжелые изотопы с большим количеством нейтронов. Все они, начиная с 19O и заканчивая 26O, неустойчивы. При этом, согласно теоретическим представлениям, дважды магическое ядро 28O может быть устойчивым, хотя оно и содержит очень большое количество нейтронов. Тем не менее получить этот изотоп до сих пор не получалось. Впервые синтезировать кислород 28O удалось физикам под руководством Ёсуке Кондо (Yosuke Kondo) из Института физико-химических исследований RINKA в Японии. Для этого ученые облучали вращающуюся мишень из бериллия 9Be пучком ядер кальция 48Ca. При этом получались разные легкие ядра, из которых с помощью спектрометра физики отсеяли ядра фтора 29F и направили их на мишень из жидкого водорода. При этом из фтора образовались изотопы кислорода 27O и 28O. Далее, с помощью спектрометров физики смогли детектировать продукты их быстрого распада — нейтроны и кислород 24O. Рассчитанная учеными энергия распада составила 0,5 мегаэлектронвольта для 28O и 1,09 мегаэлектронвольта для 27O. Исходя из того, что энергия распада 27O и 25O больше, чем у 28O, физики сделали вывод, что изотоп 28O разложился ступенчато — сначала образовался изотоп 26O и два нейтрона, а затем 26O превратился в 24O и еще два нейтрона. Далее, физики провели расчеты нуклонной структуры 28O на основе теории χEFT (chiral effective field theory) и метода связанных кластеров (coupled-cluster method). Расчеты показали, что нестабильность ядра 28O связана с нестандартным расположением его нейтронных оболочек, которое приводит к заселению возбужденных состояний ядра с низкой энергией (intruder states). В результате физики впервые получили изотоп кислорода 28O и провели теоретические расчеты, объясняющие его нестабильность нестандартной структурой нейтронных оболочек. Тем не менее, прямые доказательства немагичности нейтронной структуры 28O еще предстоит найти. Ранее мы рассказывали о том, как физики получили самый тяжелый изотоп кальция.