Он распался на кислород 24O и четыре нейтрона
Японские физики синтезировали самый тяжелый на сегодняшний день изотоп кислорода 28O с магическим числом и нейтронов, и протонов. Он оказался нестабильным, несмотря на предсказанные для него магические свойства, и моментально распадался на четыре нейтрона и кислород 24O. По мнению авторов статьи в Nature, эти результаты указывают на сложную структуру нейтронной оболочки 28O с близкими по энергии возбужденными состояниями.
Стабильность изотопов физики описывают разными теоретическими моделями. В частности, некоторые из них предсказывают высокую стабильность изотопов с определенным — магическим — числом протонов и нейтронов. Для протонов магическими являются числа Z = 2, 8, 20, 50, 82, 114, 126, а для нейтронов — числа N = 2, 8, 20, 28, 50, 82, 126. В атомах с такими числами нейтронные и протонные оболочки ядра полностью заполнены, а основное и возбужденные состояния сильно отличаются по энергии — это приводит к повышенной стабильности ядра. Особенно устойчивыми являются дважды магические ядра, в которых одновременно заполнены и протонная, и нейтронная оболочки — например, самый распространенный изотоп кислорода 16O.
Для кислорода также известны более тяжелые изотопы с большим количеством нейтронов. Все они, начиная с 19O и заканчивая 26O, неустойчивы. При этом, согласно теоретическим представлениям, дважды магическое ядро 28O может быть устойчивым, хотя оно и содержит очень большое количество нейтронов. Тем не менее получить этот изотоп до сих пор не получалось.
Впервые синтезировать кислород 28O удалось физикам под руководством Ёсуке Кондо (Yosuke Kondo) из Института физико-химических исследований RINKA в Японии. Для этого ученые облучали вращающуюся мишень из бериллия 9Be пучком ядер кальция 48Ca. При этом получались разные легкие ядра, из которых с помощью спектрометра физики отсеяли ядра фтора 29F и направили их на мишень из жидкого водорода. При этом из фтора образовались изотопы кислорода 27O и 28O. Далее, с помощью спектрометров физики смогли детектировать продукты их быстрого распада — нейтроны и кислород 24O.
Рассчитанная учеными энергия распада составила 0,5 мегаэлектронвольта для 28O и 1,09 мегаэлектронвольта для 27O. Исходя из того, что энергия распада 27O и 25O больше, чем у 28O, физики сделали вывод, что изотоп 28O разложился ступенчато — сначала образовался изотоп 26O и два нейтрона, а затем 26O превратился в 24O и еще два нейтрона.
Далее, физики провели расчеты нуклонной структуры 28O на основе теории χEFT (chiral effective field theory) и метода связанных кластеров (coupled-cluster method). Расчеты показали, что нестабильность ядра 28O связана с нестандартным расположением его нейтронных оболочек, которое приводит к заселению возбужденных состояний ядра с низкой энергией (intruder states).
В результате физики впервые получили изотоп кислорода 28O и провели теоретические расчеты, объясняющие его нестабильность нестандартной структурой нейтронных оболочек. Тем не менее, прямые доказательства немагичности нейтронной структуры 28O еще предстоит найти.
Ранее мы рассказывали о том, как физики получили самый тяжелый изотоп кальция.
Энтропия Шеннона при этом показала линейный рост
Физики провели диффузионно-осадочную химическую реакцию в среде с несколькими источниками диффузии одновременно и выяснили следующее: когда фронты распространения осадков встречаются, то вместо смешивания они оставляют между собой зазор. Ученые предположили, что получившиеся структуры оказались физико-химическим аналогом диаграмм Вороного для спонтанного процесса. Результаты исследования опубликованы в Physical Review Letters.