Благодаря данным со станции «Хаябуса-2» астрономы выяснили, что в прошлом астероид Рюгу временно был ближе к Солнцу, чем сейчас, что привело к покраснению поверхностного слоя. Об этом говорят данные приборов и снимки, полученные станцией в ходе первой операции забора грунта с астероида. Статья опубликована в журнале Science.
Японская автоматическая межпланетная станция «Хаябуса-2» исследовала 900-метровый околоземной астероид (162173) Рюгу, который относится к С-типу. Аппарат прибыл к астероиду 27 июня 2018 года и проработал на орбите вокруг него полтора года, успев за это время два раза сблизиться с поверхностью Рюгу для взятия грунта и высадив на него четыре спускаемых аппарата. 13 ноября 2019 года станция покинула астероид, ожидается, что она доставит капсулу с образцами грунта на околоземную орбиту в конце 2020 года.
21 февраля 2019 года cостоялась первая процедура забора грунта с Рюгу. Станция вначале снизилась до 45 метров, затем начала двигаться вдоль поверхности к намеченной заранее точке, а в момент максимального сближения с астероидом аппарат выстрелил по нему пятиграммовой танталовой пулей, которая двигалась со скоростью около трехсот метров в секунду, после чего захватил пыль и мелкие обломки породы пробоотборным механизмом, а затем вернулся на рабочую 20-километровую орбиту.
Группа астрономов во главе с Томокацу Морота (Tomokatsu Morota) проанализировала снимки, полученныe бортовыми камерами станции во время операции, а также данные, собранные спектрометром NIRS3. Ученых интересовали механические и химические свойства фрагментированного поверхностного слоя Рюгу. Оказалось, что большие валуны (до одного метра) смогли отлететь на пять метров, а большая часть наблюдавшихся разлетавшихся обломков была мелкой галькой и зернами диаметром от одного до нескольких миллиметров. Такая высокая подвижность реголита указывает на то, что силы сцепления между валунами и галькой могут быть очень слабыми, это согласуется с наблюдаемым дефицитом небольших (до ста метров в диаметре) кратеров на Рюгу и убылью вещества на склонах сохранившихся кратеров. Оценка общей массы поднятого облака мелких обломков, образованного в результате действия двигателей станции и выстрела, составляет примерно 12 килограммов.
Более ранние данные, собранные станцией, показали, что поверхность Рюгу состоит из двух различных типов вещества, одно из которых кажется красноватым, а другое голубоватым. Тогда причина подобного различия осталась неизвестной. Изображения поверхности астероида, полученные до и после первой операции забора грунта, показали, что ее первоначальный цвет был более голубым, чем у окружающей области, но стал более красным после оседания поднятых с поверхности темных тонких зерен. Сопоставление снимков со спектрометрическим данными позволило ученым прийти к выводу, что эти мелкие красноватые зерна первоначально были сосредоточены на поверхностях валунов или в пустотах внутри них, и не отличаются по составу от них.
Покраснение поверхностного слоя, как считают ученые, связано с кратковременным периодом сближения Рюгу с Солнцем в прошлом, а не с процессом космического выветривания. На основе полученного распределения кратеров на поверхности астероида, отличающихся по цвету, астрономы построили новую модель эволюции Рюгу. Предполагается, что он пережил более чем один процесс разрушения родительского тела и его повторного формирования из обломков, а его текущая форма, похожая на волчок, должна была сформироваться более 8,5 миллионов лет назад. Покраснение поверхности Рюгу произошло после смещения его положения из Главного пояса астероидов на нынешнюю околоземную орбиту. Голубоватые области возникали при образовании новых кратеров, событий разрушения валунов или транспорта вещества из экваториального пояса в средние широты.
Подробнее о «Хаябусе-2» можно прочитать в нашем материале «Собрать прошлое по крупицам». Мы внимательно следим за каждым событием миссии в разделе «Приключения «Хаябусы-2».
Александр Войтюк
Это связано с ускорением вращения Марса вокруг своей оси
Планетологи оценили скорость уменьшения продолжительности марсианских суток, которая составила долю миллисекунды в год и вызвана ускорением вращения планеты, а также уточнили размеры ядра Марса. Это удалось сделать благодаря радиоэксперименту RISE, проводившемуся при помощи марсианской автоматической станции InSight. Статья опубликована в журнале Nature. InSight стала первой внеземной геофизической исследовательской станцией, которая проработала на Марсе чуть больше четырех лет, исследуя его сейсмическую активность и внутреннее строение. Одним из основных научных инструментов аппарата стал эксперимент RISE (Rotation and Interior Structure Experiment), в рамках которого отслеживался доплеровский сдвиг в частоте радиосигналов, передаваемых с наземных станций на InSight и обратно. Благодаря ему можно оценить скорости прецессии и нутации оси вращения планеты, которые связаны с параметрами марсианских ядра и мантии. Группа планетологов во главе с Себастьяном Ле Мейстром (Sébastien Le Maistre) из Королевской обсерватории Бельгии опубликовала результаты анализа данных, собранных RISE за 30 месяцев наблюдений для определения свойств ядра и мантии Марса. Ученые также использовали архивные данные спускаемого аппарата «Викинг-1». Исследователи уточнили радиус ядра Марса, который теперь составляет 1835±55 километров, в предположении, что ядро является конвективным и жидким сплавом железа и серы, а мантия твердая. Это хорошо согласуется с предыдущими оценками и требует большого содержания легких элементов. Ученые предполагают, что у Марса все же нет внутреннего твердого ядра. Наиболее совместимый с данными RISE модельный состав ядра включает в себя 2,5 массовых процентов кислорода, 15 массовых процентов серы, 1,5 массовых процентов углерода и один массовый процент водорода. Ученые также оценили ускорение вращения планеты вокруг собственной оси, которое составляет четыре угловых миллисекунды в год за год, что соответствует уменьшению продолжительности марсианских суток на 7,6×10-4 миллисекунды в год. Это значение на три порядка больше, чем эффект от взаимодействия Марса со спутником Фобосом и Солнцем, и может быть связано с долгосрочной внутренней эволюцией Марса или с накоплением льда на полярных шапках и изменением параметров атмосферы. Ранее мы рассказывали о том, как InSight составил детальную схему подповерхностных слоев Марса.