Ученые с помощью программы ACOLITE обработали множество снимков прибрежных зон, полученных со спутников Sentinel-2A и Sentinel-2B, и разработали новый индекс, который позволяет отличать пятна макропластика от сопутствующих ему компонентов на поверхности океана. Согласно результатам их исследования, опубликованного в журнале Scientific Reports, точность этого метода достигает 86 процентов, и теперь его можно применять в экологическом мониторинге.
Пластиковый мусор, попадающий в океан, некоторое время плавает на поверхности, а потом может обрасти живыми организмами и затонуть. И в том и в другом случае он разрушается до частиц размером менее пяти миллиметров, которые называют микропластиком. Отслеживать и устранять загрязнение морских вод микропластиком пока невозможно, поэтому ученые ищут оптимальные способы обнаружения и ликвидации крупных пластиковых фрагментов до того, как они затонут или разрушатся на мелкие частицы.
Большой потенциал имеют методы дистанционного зондирования, однако, до недавних пор их было неудобно применять для постоянного мониторинга пластикового загрязнения. К примеру, широко используемый в экологических исследованиях спутник Landsat 8 делает мультиспектральные снимки разрешением 30 метров с шагом в 16 дней, то есть может пропустить свежеобразовшееся пластиковое пятно небольшого размера.
Европейское космическое агентство несколько лет назад запустило спутники Sentinel-2A и Sentinel-2B, которые делают снимки разрешением 10 метров с шагом 2-5 дней. Эти спутники ориентированы на съемку суши, но захватывают большие площади прибрежных акваторий, которые зачастую становятся первичными очагами пластикового загрязнения.
Ученые под руководством Лорен Бирманн (Lauren Biermann) из Морской лаборатории Плимута провели исследование, чтобы оценить возможность мониторинга пятен макропластика с помощью снимков спутников серии Sentinel. На основании информации о постоянном появлении пластикового мусора из научных статей, прессы и социальных сетей в качестве пробных площадок они выбрали прибрежные воды Ганы, запада Северной Америки, Вьетнама и восточного побережья Шотландии.
В основе метода лежит различная отражающая способность объектов на поверхности океана по отношению к излучению в ближнем инфракрасном диапазоне (NIR). Чистая поверхность морской воды его поглощает, а плавающие на ней объекты (морская пена, водоросли, куски древесины и пластик) — отражают. Авторы исследования определили спектральные сигнатуры всех этих компонентов, используя индекс NDVI (с помощью него удобно отличать растительность от других объектов — воды, застройки, асфальта и т.д.) и новый индекс FDI (Floating Debris Index), который позволяет более точно идентифицировать плавающие пятна пластика на поверхности моря. Исследователи обучили программное обеспечение ACOLITE (именно в нем ведется работа со снимками, полученными из спутников) возможность различать материалы с помощью методов машинного обучения (они не привели в статье никаких данных о том, какой именно алгоритм использовался и на каких выборках обучался). Общая схема работы представлена ниже.
Сочетание двух индексов позволило добиться кластеризации всех материалов на поверхности океана и эффективно отличить их друг от друга. Авторы исследования составили обширные библиотеки спектральных сигнатур для различных видов пластика и сопутствующих компонентов, которыми смогут пользоваться все желающие при проведении экологического мониторинга и дешифрировании снимков водной поверхности.
Ученые проверили точность определения макропластика на прибрежной акватории Греции, снимки которой не использовали в процессе кластеризации спектральных сигнатур. Оказалось, что спутник никогда не путает пластик с водорослями и древесиной, но может принять его за морскую воду или пену. Это связано с ограничениями метода: не менее 30 процентов пикселя (10×10 метров) должны быть заполнены пластиком, чтобы спутник смог его распознать. В целом испытания оценили точность метода в 86 процентов, а во время обучения она менялась от 77 процентов у побережья Шотландии до 100 процентов у островов Сан-Хуан (США).
Пластиковое загрязнение достигает все более отдаленных уголков Земли: так, недавно микропластик был обнаружен во льдах Антарктиды, причем он имеет «местное» происхождение — ученые связали его попадание на этот континент с коммерческим трафиком судов.
Марина Попова
В местах под снежным покровом она уже стала круглогодичным источником парниковых газов
За последнюю четверть века в аляскинской тундре произошла смена растительных сообществ и рост их первичной продуктивности на фоне увеличения высоты снежного покрова. Этот биом рискует стать круглогодичным источником углеродных выбросов: зимой с участков, покрытым снегом, уже выбрасывается в три раз больше углерода, чем с участков, где он отсутствует, а запасы углерода и азота в почвах под снегом уже выросли в четыре раза. Такие выводы содержит исследование, опубликованное в журнале AGU Advances. Арктическая многолетняя мерзлота — один из главных пулов углерода в его планетарном цикле. В арктических почвах законсервировано 1035±150 миллиардов тонн углерода и от 22 до 106 миллиардов тонн азота. В случае таяния мерзлоты почвенное органическое вещество, в котором заключены эти элементы, начнут разлагать микроорганизмы. Тогда углерод и азот будут окислены и попадут в атмосферу в виде парниковых газов, что может оказать значительное влияние на климатическую систему Земли. Одним из факторов риска для многолетней мерзлоты является высота снежного покрова: большое количество снега приводит к более низким температурам в течение вегетационного сезона, но осенью изолирует толщу мерзлоты от низких температур воздуха и способствует ее более глубокому сезонному протаиванию. Ученые под руководством Шона Педрона (Shawn Pedron) из Калифорнийского университета в Ирвайне исследовали влияние снежного покрова на потоки углерода из многолетней мерзлоте на Аляске. Для этого они измеряли глубину сезонно-талого слоя и отбирали керны из многолетнемерзлой толщи глубиной 164 сантиметра (n=25) и разделяли их на почвенные горизонты, а затем в лабораторных условиях измеряли в них микробное дыхание. Данные о высоте снежного покрова в течение года были получены из базы Toolik Environmental Data Center. Авторы исследования пришли к выводу, что с 1994 по 2021 год тундра постепенно превращалась из злаковой в кустарниковую. Первичная продукция за этот период выросла на 45 процентов (p < 0,05), а углерода в течение вегетационного сезона стало связываться больше на 6-13 процентов. С декабря по май под снежным покровом на глубинах 20-80 сантиметров температура была заметно выше (-0,75 ± 0,55 градуса Цельсия), чем на участках, где он отсутствовал (-8,6 ± 4,1 градуса Цельсия). Из-за повышения продуктивности растительности, нагрева почвы, а также ее уплотнения и проседания под снежной толщей, количество углерода и азота под снежным покровом за эти годы выросло в четыре раза. Ученые подчеркнули, что на участках под толщей снега аляскинская тундра превратилась в круглогодичный источник выбросов углерода: в зимний период с октября по май с них выбрасывалось по 267, а с участков, свободных от снега — по 87 грамм углерода с квадратного метра. Причем изотопный анализ возраста выбрасываемого углерода показал, что происходит эмиссия не только недавно ассимилированного из атмосферы углерода, но и того, что ранее был законсервирован в органическом веществе многолетнемерзлых почв. Недавно в таянии многолетней мерзлоты обвинили бобров: возле прудов на северо-западе Аляски, которые они создают или изменяют своей деятельностью, развиваются термокарстовые процессы и происходят выбросы метана.