Пять крупных спутников Урана сформировались в результате конденсации водяного пара в лед в околопланетном диске, который возник от столкновения с крупным телом, изменившего наклон оси вращения планеты. Теоретическую модель, которая объясняет этот процесс, разработала группа японских исследователей, их статья опубликована в Nature Astronomy.
Среди 27 известных к настоящему времени естественных спутников Урана (они, кстати, носят имена персонажей из произведений Александра Поупа и Уильяма Шекспира) принято выделять пять крупных, которые имеют форму, близкую к шарообразной — это Миранда, Ариэль, Умбриэль, Титания и Оберон. Все они, за исключением практически полностью ледяной Миранды, состоят из примерно равного соотношения льда и горных пород.
Существуют два возможных сценария образования этих спутников — эволюция околопланетного субдиска либо аккреция вещества, которое было выброшено в результате столкновения Урана с массивным телом. Однако первый сценарий не объясняет тот факт, что система спутников вращается в том же направлении, что Уран и имеет тот же наклон оси вращения — плоскость экватора Урана наклонена к плоскости орбиты почти на 98 градусов, он как будто лежит на боку. Ведь субдиск формируется в орбитальной плоскости планеты, притягивая водород и гелий из диска, окружающего звезду.
Второй сценарий — формирование спутников из диска, который образовался в результате столкновения Урана с другим небесным телом — гораздо лучше объясняет существующие сегодня параметры орбит лун этой планеты. Этот сценарий также объясняет значительный наклон оси вращения Урана. Однако при моделировании этого процесса до сих пор получались околопланетные диски, которые на порядок меньше и на два порядка более массивны, чем система из пяти крупных спутников, и к тому же они очень бедны горными породами – ведь вещество из маленького каменного ядра Урана не так легко высвободить даже при условии столкновения с массивным объектом.
Авторы исследования под руководством Сигэру Ида (Shigeru Ida) из Токийского технологического института пришли к выводу, что это происходит потому, что ранее для моделирования использовали модель «гигантского столкновения» — как то, в результате которого у Земли образовалась Луна. При этом не принимались во внимание особенности эволюции околопланетного диска, состоящего, в основном, из водяного пара, а не из горных пород, как это было в случае с Землей.
Скорее всего, тело, с которым Уран столкнулся в ранний период своей истории, состояло большей частью из льдов — как, собственно, и сам Уран. Поскольку температура испарения водяного льда невелика, в результате столкновения выброшенное на орбиту планеты вещество, перешедшее в газообразное состояние, не улетело в межпланетное пространство, а осталось на орбите. Постепенно диск потерял значительную массу водяного пара и распределился по уровням существующей системы спутников, пока пар не охладился достаточно для того, чтобы началась конденсация льда на твёрдых, силикатных фрагментах и формирование из ледяных зерен более крупных тел.
Модель, предложенная японскими учеными, воспроизводит орбиты спутников Урана и их приблизительную массу в соответствии с наблюдаемыми в реальности параметрами. Она предлагает сценарий формирования спутников у ледяных гигантов в зависимости от массы и физического радиуса центральной планеты, который отличается от способа образования спутников у планет земной группы и газовых гигантов.
Авторы статьи уверены, что эту модель можно использовать для внутренней части системы спутников Нептуна, пренебрегая наличием Тритона, который мог быть захвачен планетой. Также ученые надеются, что таким образом можно будет объяснить возможное наличие у суперземель ледяных спутников. Уже сегодня наблюдения указывают на то, что многие открытые в экзопланетных системах суперземли могут быть богаты водяным льдом, даже находясь на близких к своим звездам орбитах. Ранее мы писали о том, как в атмосферах экзопланет обнаружили водяной пар.
Помимо 27 спутников, Уран обладает интересной системой колец. N + 1 уже рассказывал о том, как спутники взаимодействуют с кольцами и друг с другом.
Евгения Скареднева
В теории их быть не должно
Астрономы обнаружили сразу две крупные экзопланеты у очень маломассивного красного карлика. Такое открытие не вписывается в стандартные теории формирования планет, которые предсказывают отсутствие таких экзогигантов. Препринт работы опубликован на сайте arXiv.org. Считается, что маломассивные звезды очень редко формируют вокруг себя крупные планеты, а в случае очень легких красных карликов, с массами менее 0,2-0,4 массы Солнца, процесс образования гиганта в протопланетном диске, согласно стандартной модели аккреции вещества на твердое ядро, идти не должен. Однако на сегодняшний день уже известна малочисленная, но существующая в реальности популяция экзогигантов вокруг звезд с малой массой, которая начала формироваться 25 лет назад, когда была открыта экзопланета GJ 876b. Поиск таких тел важен для уточнения теоретических моделей и обоснования исключений из них. Группа астрономов во главе с Хосе-Мануэлем Альменарой (Jose-Manuel Almenara) из Университета Гренобль-Альпы сообщила об открытии сразу двух крупных экзопланет на орбитах вокруг маломассивной звезды. Речь идет о красном карлике TOI 4860, наблюдения за которым велись при помощи транзитного метода космическим телескопом TESS и наземным телескопом ExTrA, а также метода радиальных скоростей при помощи спектрографов SPIRou и ESPRESSO, установленных на наземных телескопах. TOI 4860 относится к спектральному классу M3.5V, обладает массой 0,34 массы Солнца и радиусом 0,354 радиуса Солнца и находится на удалении 262,2 светового года от Солнца. Звезда характеризуется повышенной металличностью, демонстрирует низкий уровень активности, а ее возраст оценивается примерно в четыре миллиарда лет. Существование TOI-4860b было подтверждено, эта транзитная экзопланета обладает массой 0,273 массы Юпитера и радиусом 0,766 радиуса Юпитера, и, скорее всего, похожа на Сатурн. Она находится на близкой к круговой орбите с периодом 1,52 дня и средним расстоянием до звезды в 0,0181 астрономической единицы, а ее эффективная температура составляет 694 кельвина. Судя по близости к звезде, форма планеты должна искажаться приливными силами, а орбита будет уменьшаться со временем. Экзогигант представляется интересной целью для дальнейших наблюдений, в том числе спектроскопических исследований атмосферы. TOI-4860с пока что остается кандидатом в экзопланету. Ее орбита характеризуется вытянутостью (эксцентриситет 0,657), длиной большой полуоси 0,776 астрономической единицы и периодом 426,9 дня, при этом сама экзопланета не транзитная и обладает минимальной массой 1,66 массы Юпитера. Ранее мы рассказывали о том, как ученые нашли аномально долгопериодического экзогиганта у близкой к Солнцу звезды.