В прошлом Уран мог столкнуться с массивным ледяным телом в два раза больше Земли, что привело к смещению его оси вращения, сообщают исследователи в журнале Astrophysical Journal. Это объясняет, почему на планете господствуют такие низкие температуры.
В отличие от других планет Солнечной системы, Уран фактически лежит на боку — плоскость экватора наклонена к плоскости его орбиты почти под прямым углом. Если остальные планеты похожи на волчки, то Уран скорее напоминает катящийся мячик. Кроме того, на газовом гиганте господствуют крайне низкие температуры: несмотря на то что Нептун и Плутон находятся дальше от Солнца, самой холодной планетой Солнечной системы является именно Уран. Самая низкая температура, зарегистрированная в тропопаузе небесного тела, составляет -224 градуса Цельсия. Ранее исследователи уже предполагали, что наблюдаемые особенности планеты могут объясняться столкновением с крупным зародышем планеты в прошлом, а сейчас ученым удалось найти аргумент в пользу этой теории.
Авторы новой работы под руководством Джейкоба Кегеррейса (Jacob Kegerreis) из Даремского университета провели трехмерное гидродинамическое моделирование, в котором рассмотрели разные варианты столкновения Урана с крупным ледяным телом (вероятно, протопланетой). Масса объекта, состоявшего из каменистого ядра и ледяной мантии, составляла от одной до трех земных. Масса Урана тогда была больше массы нашей планеты в 14,5 раз. В общей сложности ученые рассмотрели более 50 возможных сценариев.
Выяснилось, что масса столкнувшегося с Ураном небесного тела должна быть больше, чем масса нашей планеты, чтобы сообщить ему достаточный угловой момент. Вероятнее всего, газовый гигант задел сбоку объект с массой около двух земных. Столкновение было достаточно сильным, чтобы наклонить ось вращения планеты, но при этом недостаточно мощным, чтобы Уран потерял заметную часть своей атмосферы.
Кроме того, симуляции показали, что часть вещества ледяной протопланеты должна была быть выброшена на орбиту газового гиганта. В результате обломки могли сформировать тонкую оболочку вблизи ледяной мантии Урана, тем самым блокируя тепло, идущее от его недр. Из того же вещества, вероятно, могли образоваться и спутники планеты, а также система его колец.
По словам исследователей, Уран во многом похож на широко распространенный тип экзопланет со средней массой (от Урана до Нептуна). Астрономы надеются, что их работа поможет объяснить, как эволюционируют такие объекты, а также определить их состав.
Ранее ученые подтвердили, что облака на Уране состоят преимущественно из сероводорода. Также исследователи определили, что одно из колец планеты приобрело странную форму в результате резонанса спутников.
Кристина Уласович
Его нашли в Сахаре в 2020 году
Планетологи определили, что изотоп 26Al был неоднородно пространственно распределен в ранней Солнечной системе и определять возраст метеоритов только 26Al—26Mg методом необходимо с осторожностью. Такой вывод был сделан в ходе анализа метеорита EC 002, найденного в Сахаре в 2020 году. Статья опубликована в журнале Nature Communications. Считается, что радиоактивный изотоп алюминия 26Al (период полураспада 0,705 миллиона лет), возникающий при взрыве сверхновых, играет важную роль в процессах планетообразования. Тепло, выделяемое при его распаде, обеспечивало нагрев недр планетезималей, протопланет и астероидов в ранней Солнечной системе, что необходимо для протекания процессов метаморфизма, кроме того, он мог способствовать образованию химических соединений. Цепочка распада 26Al—26Mg также может использоваться для радиоизотопного датирования вещества метеоритов или малых тел, его обнаруживали в хондрах, ахондритах и включениях, богатых кальцием и алюминием (CAI), которые считаются одними из первых объектов, образовавшихся в Солнечной системе. Однако для правильной интерпретации данных измерений в космохимических исследованиях необходимо понимать степень равномерности распределения 26Al и других короткоживущих радионуклидов в ранней Солнечной системе. Группа планетологов во главе с Евгением Крестьяниновым (Evgenii Krestianinov) из Австралийского национального университета опубликовала результаты исследования вещества метеорита Erg Chech 002 (или EC 002) и радиоизотопного датирования его возраста при помощи свинец-свинцового (207Pb—206Pb) метода и его сравнения с данными по содержанию элементов цепочки 26Al—26Mg. Ученых интересовала оценка распределения 26Al в ранней Солнечной системе. EC 002 относится к андезитовым ахондритам и был обнаружен в Сахаре в 2020 году, предыдущие исследования показали, что это самая древняя из известных магматических пород в Солнечной системе, представляющая собой фрагмент коры протопланеты. Измеренный свинец-свинцовым методом возраст фракций пироксена, цельных пород и плагиоклаза в составе метеорита составил 4565,56±0,12 миллионов лет, эта временная отметка может однозначно интерпретироваться как время кристаллизации расплава. Измеренное соотношение содержания 26Al/ 27Al в EC 002 больше, чем в ангритах Д’Орбиньи и Sahara 99555, в 3-4 раза, таким образом, 26Al был неоднородно распределен среди зон образования родительских астероидов ахондритов во внутренней части протосолнечной туманности или протосолнечного диска, куда попадал из межзвездной среды. Это, в свою очередь, требует пересмотра относительных возрастов образцов метеоритов, определенных только при помощи цепочки 26Al—26Mg. Ранее мы рассказывали о том, как геохимики впервые нашли в метеорите вещество сверхновой типа Ia.