Обработка антибиотиками слабо влияет на частоту горизонтального переноса генов от бактерии к бактерии, сообщается в Science Advances. В большей степени на частоту этого процесса влияет то, какие плазмиды (небольшие молекулы ДНК, которые несут в себе несколько генов и могут быть переданы от одной клетки другой) содержит микроорганизм.
Бактерии быстро становятся устойчивыми к новым антибиотикам (приобретают резистентность) в том числе потому, что способны к горизонтальному переносу генов — передаче ДНК не только потомкам, а вообще любым особям своего или даже чужого вида. Один из наиболее распространенных способов такого переноса — конъюгация с передачей плазмид. Клетка-донор выпускает в сторону другой половой пиль — полую белковую нить. Пиль соединяет две клетки и по нему плазмида переходит в организм реципиента.
Плазмиды нередко содержат гены устойчивости к антибиотикам и другим негативным факторам. Логично предположить, что в присутствии антибиотиков конъюгация и, следовательно, передача таких генов происходят чаще. Но на самом деле эксперименты этого не подтверждают, и нередко получается, что интенсивность горизонтального переноса генов зависит от динамики численности популяции и многих других факторов. При этом установить влияние каждого фактора по отдельности бывает сложно.
Микробиологи из Университета Дьюка (США) и нескольких исследовательских учреждений Шэньчжэня (Китай) под руководством Линчуна Ю (Lingchong You) провели масштабный анализ причин, по которым частота передачи плазмид может вырасти. Ученые исследовали 219 штаммов кишечной палочки (Escherichia coli), которые с 2002 по 2014 годы выделили из крови пациентов больницы Университета Дьюка.
Эти штаммы за счет своих плазмид были устойчивы к одному из антибиотиков с разными механизмами действия — канамицину, карбенициллину, хлорамфениколу, норфлоксацину либо эритромицину. Культуры таких кишечных палочек смешивали с другими бактериями так, чтобы каждый штамм в паре обладал резистентностью к другому антибиотику, нежели второй, и растили полученные смеси на среде, в которой присутствовало два антибиотика. Таким образом, преимущество получали бактерии, которые получили от организмов другого штамма плазмиду с недостающими генами устойчивости ко второму противомикробному веществу.
Главным образом исследователи оценивали способность E. coli передавать гены бета-лактамаз — ферментов, способных разрушать бета-лактамы (например карбенициллин) и тем самым обеспечивать резистентность к ним. Раз в сутки культуры пересевали, при этом разводили их в тысячу раз. Это позволяло утверждать, что на скорость горизонтального переноса генов не влияет количество бактерий изначальных штаммов.
Геномы всех исследованных линий, кроме 19, секвенировали либо нашли в уже имеющихся библиотеках и сопоставили их с частотой случаев успешной передачи плазмид у каждого штамма.
Оказалось, что лучше всего со скоростью горизонтального переноса генов коррелирует то, к какой группе несовместимости Inc относятся плазмиды донора и реципиента. Плазмиды делятся на группы в зависимости от того, как выглядит точка начала их репликации, и в одной клетке, как правило, не должно быть плазмид из одной группы: они будут мешать репликации друг друга.
Присутствие в среде конкретного антибиотика и его концентрация слабо влияли на частоту конъюгаций, увеличивая ее не более чем в 5 раз по сравнению с контролем. Только у одного штамма она вырастала в 31 раз, если его культивировали в среде с эритромицином либо хлорамфениколом.
Авторы исследования отмечают, что строение плазмид и в особенности их разделение на группы несовместимости Inc, может в будущем стать важным показателем для оценки вероятности того, с какой скоростью у данной бактерии разовьется устойчивость к антибиотикам. Однако для этого нужно проверить, выполняются ли у других видов те же закономерности, что нашли в этом исследовании на примере кишечной палочки.
Скорее всего, устойчивость к антибиотикам начала развиваться у бактерий задолго до открытия пенициллина человеком, ведь подобные вещества всегда присутствовали в окружающей среде. Вероятно, поэтому антибиотикорезистентные микроорганизмы находят у представителей изолированных племен, мумий X–XVIII веков и даже в туалете на МКС (хотя в последнем случае это следствие загрязнения бактериями с Земли).
Светлана Ястребова
Но не все мыши способны принимать сигналы мозгом от мастоцитов
Лейкотриен С4, его производные и фактор роста и дифференцировки 15 типа названы главными медиаторами воспаления, опосредующими избегание пищевого аллергена у мышей. Это проявление аллергии возникало даже в отсутствии типичных проявлений пищевой аллергии — например, если давать вещество под прикрытием антигистаминных препаратов. Соединения, вырабатываемые тучными клетками и эпителиоцитами после введения аллергена, опосредует связь иммунной системой и ЦНС. Исследование опубликовано в журнале Nature. Анафилактические реакции, или иммуноглобулин Е-опосредованные реакции гиперчувствительности немедленного типа, основаны на выработке антител класса Е (IgE) к аллергену. Комплекс из аллергена и IgE активирует клетки, участвующие во врожденном иммунитете — тучные клетки (мастоциты) и базофилы, выделяющие медиаторы воспаления. Их действие на уровне организма проявляется не только местным кожным зудом, бронхоспазмом, или, как при пищевой аллергии, болью в животе, но и реакциями со стороны центральной нервной системы, за которыми может скрываться нейровоспаление. При этом механизм неврологических проявлений атопических реакций остается неизученным. Фармакологи и иммунологи из США, Бразилии и Франции под руководством Руслана Меджитова (Ruslan Medzhitov) изучили связь иммунологических и отдельных поведенческих проявлений на примере модели пищевой аллергии на яичный белок (овальбумин) у мышей. Они сенсибилизировали мышей линии BALB/c к яичному белку, вводя его подкожно вместе с адъювантом, усиливающим иммунный ответ. Когда наступала сенсибилизация, животных сажали в клетку с двумя поилками: в одну из них наливали воду, а в другую — раствор яичного белка. Животные, у которых выработалась аллергия, предпочитали пить воду, в то время как мыши из контрольной несенсибилизированной группы предпочитали питательный белок. Выраженность такого поведения коррелировала с выраженностью сенсибилизации — то есть, уровнем IgE в крови и маркеров активности тучных клеток в стенке кишечника. Лечение мышей от аллергии антигистаминными препаратами не устраняло избегающего поведения в отношении аллергена. из чего авторы заключили, что связь между тучными клетками и мозгом опосредована какими-то другими соединениями. Точно так же, блокада высвобождения серотонина, субстанции P и медиатора ноцицептивной системы CGRP не изменила поведение мышей. Напротив, блокада фермента 5-липоксигеназы (фермента, необходимого для синтеза лейкотриена C4 и его производных, D4 и E4) значимо снизила выраженность поведенческих проявлений атопии. Так же повышался уровень ростового фактора GDF15, вырабатываемого эпителиальными клетками при контакте с активированными мастоцитами, по мере сенсибилизации. Действуют ли лейкотриены напрямую на мозг, или же опосредованно — не ясно, но пересечение блуждающего нерва (по нему передается афферентная информация от кишечника в ЦНС) не устранило полностью поведенческие реакции. Введение GDF15 перед экспозицией аллергена вызывало отвращение к овальбумину у сенсибилизированных животных, а блокада действия этого ростового фактора при помощи антител вызывает обратный эффект. Чтобы понять, какие структуры ЦНС отвечают за отвращение к аллергену, ученые гистологически исследовали мозг мышей, сенсибилизированных к овальбумину, спустя 90 минут после ег действия. Структуры, активируемые предъявлением аллергена — ядро одиночного пути, наружно-латеральная часть парабрахиального ядра и центральные участки миндалевидного тела — регионы, роль которых известна в избегании. Таким образом, ученые весьма подробно проследили цепочку от попадания в организм аллергена через активацию тучных клеток, вырабатывающих лейкотриены, и заставляющие эпителий вырабатывать цитокин GDF15, действующих на ЦНС. GDF15 — это ростовой фактор, вырабатываемый многими эпителиальными и мышечными клетками организма человека в ответ на повреждающие факторы, который связывают со снижением аппетита, симптомами депрессии и активацией эндокринной оси «гипоталамус-гипофиз-надпочечники». Физиологические эффекты лейкотриенов у человека пока и не изучены. Лучше всего известно, как они действуют на микроциркуляцию и проницаемость сосудистой стенки и изменение бронхиальной секреции при астме. Но известно, что синтез лейкотриенов происходит и в стволе мозга и промежуточном мозгу: постулируется, что лейкотриены опосредуют нейровоспаление. Пока неясно, касаются ли обнаруженные эффекты любой атопической реакции, или же возникают только при перорально введении аллергена. Из многосложности и разветвленности системы следует в том числе и ее изменчивость. Показательно, что попытка воспроизвести весь эксперимент на мышах другой генетической линии (C57BL/6) не увенчалась успехом: у мышей из этой линии менее выражен IgE-опосредованный иммунный ответ и менее активен подъем уровня GDF15 в ответ на предъявление аллергена. К тому же, не все аллергены стабильно вызывают отвращение у мышей. Ранее мы писали о том, что раннее столкновение организма ребенка с потенциальным пищевым аллергеном снижает вероятность развития тяжелых аллергических реакций впоследствии.