Физики создали гибридную систему для систематического проведения экспериментов в области гидродинамики, которая состоит из роботизированного испытательного бассейна и управляющего алгоритма. Робот проводит опыты, а программа самостоятельно обрабатывает данные и выбирает оптимальные условия для следующего эксперимента, что позволяет опробовать большое пространство параметров и достичь совпадения результатов вычислений с реальностью, пишут авторы в журнале Science Robotics.
Во многих научных задачах приходится иметь дело с процессами, на ход которых одновременно влияет множество факторов. В такой ситуации обычно стараются найти режим, в котором действием некоторых явлений можно пренебречь, что упрощает задачу как с теоретической точки зрения, так и в плане анализа экспериментальных данных. Такой подход требует выдвижения ряда промежуточных гипотез и проверки их на соответствие с наблюдениями.
Альтернативной является исследование всего пространства параметров, которое может обладать высокой размерностью. Для этого могут потребоваться многие тысячи однотипных экспериментов, процесс проведения которых потенциально можно автоматизировать.
К научным областям с подобными проблемами можно отнести гидродинамику. Несмотря на существование достаточно общих математических закономерностей, таких как уравнения Навье — Стокса, сложность их решения не позволяет теоретически решить большинство возникающих задач. В связи с этим приходится проводить множество моделирований и экспериментов, чтобы добиться оптимального результата.
Ученые из Массачусетского технологического института при участии Дися Фаня (Dixia Fan) создали гибридную роботизированную систему для изучения вызываемых вихреобразованием колебаний. Это явление мешает разрабатывать судна с минимальным сопротивлением при движении по воде. Роботизированный «ученый» провел около 100 тысяч опытов за год, причем по оценкам авторов он выполнял среднее для аспиранта количество экспериментов каждые две недели, а в сумме провел примерно столько же, сколько сделано в рамках всех других работ на данную тему. В результате получилось исследовать намного большее пространство параметров, чем удавалось раньше в рамках данной задачи.
Авторы называют систему интеллектуальным испытательным бассейном (intelligent towing tank, ITT). Они исследовали задачу возникновения колебаний тела необтекаемой формы, помещенного в поток жидкости. В таком случае при превышении критического значения числа Рейнольдса (обычно порядка 50) за телом из-за неустойчивостей образуются несимметричные вихри в жидкости, оказывающие давление на тело и проводящие к раскачиванию. В предыдущих исследованиях было показано, что на появление этих вихрей можно влиять, если заставить обтекаемое тело вибрировать, но количество параметров в системе не позволяло найти оптимальные значения.
Перебор всех возможных вариантов нереалистичен даже для роботизированной системы, поэтому авторы работы создали программу активного обучения. Она не вводила последовательно все возможные значения параметров, а минимизировала функции неопределенностей конкретных величин, например, коэффициента подъемной силы. Затем обучалась предсказывать значения этих величин посредством регрессии на основе гауссовских процессов. Задача системы заключается в достижении состояния, при котором предсказания обученной модели будут совпадать с измерениями.
Авторы отмечают, что выбранные детали реализации могут быть изменены. В частности, можно использовать другой алгоритм обучения, например, основанный на глубоком обучении нейросетей. Также в данном случае использовался простой способ поиска параметров следующего эксперимента, в то время как более глубокое понимание физики процесса позволяет сформулировать более эффективный алгоритм действий.
Ученые называют достижение демонстрацией возможной смены парадигмы проведения экспериментальных исследований. Потенциально, в будущем компьютеры (продвинутые системы искусственного интеллекта), роботы (лабораторная автоматизация) и люди будут сотрудничать в реальном времени для ускоренного получения знаний. Подобные попытки создания «роботов-ученых» предпринимаются в нескольких исследовательских центрах. В частности, тестируется системы автоматического поиска новых способов синтеза химических веществ, проверки эффективности лекарств и выдвижения научных гипотез.
Ранее физики научили роботов правильно подбрасывать рис в воке, поняли рецепт выпекания идеальных блинчиков и определили оптимальную форму лопастей плодов-«вертолетиков».
Редкий процесс рассмотрели в совместном массиве данных экспериментов CMS и ATLAS
На Большом адронном коллайдере впервые нашли убедительные следы редкого распада бозона Хиггса на Z-бозон и фотон. Его увидели со статистической точностью в 3,4σ в объединенных данных экспериментов CMS и ATLAS по протон-протонным столкновениям за 2015-2018 года. Обнаруженный сигнал совпал с предсказаниями Стандартной модели, но в будущем подробное изучение распада поможет в поиске различий между теорией и экспериментом. О своих результатах физики рассказали на конференции LHCP-2023, подробнее об открытии сообщается в сопровождающей записке. Бозон Хиггса — знаменитая элементарная частица, объясняющая существование инертной массы у ряда частиц Стандартной модели. Существование этой частицы теоретически предсказал Питер Хиггс еще в 1964 году, а в 2012 году ее обнаружили эксперименты CMS и ATLAS на Большом адронном коллайдере. Бозон Хиггса стал последней экспериментально открытой частицей Стандартной модели, но на этом его исследование не закончилось. Те же самые ATLAS и CMS продолжили изучать свойства бозона, в числе которых — каналы его распада и сила его взаимодействия с другими частицами. Почти все предсказываемые Стандартной моделью свойства бозона Хиггса удалось подтвердить. Но некоторые из распадов этой частицы чрезвычайно редкие, поэтому чтобы увидеть и изучить их необходимо накопить особенно большой массив экспериментальных данных. Один из таких распадов — канал в один переносчик слабого взаимодействия Z-бозон и один фотон. Согласно теории, для бозона Хиггса с массой в 125 гигаэлектронвольт доля этого распада среди всех остальных — примерно 0,15 процента. Именно в такие редкие распады физики изучают в поисках расхождения экспериментальных данной со Стандартной моделью, у которой не получается объяснить ряд проблем в современной физике. Отклонение вероятности такого распада от стандартных теоретических предсказаний могло послужить аргументом в пользу моделей, в которых бозон Хиггса на самом деле нейтральный скаляр или сложная частица. Это же может указать на правдивость теорий с дополнительными еще не открытыми бесцветными заряженными частицами, которые взаимодействуют с бозоном Хиггса через петлевые поправки. Теперь же ученым впервые удалось рассмотреть распад бозона Хиггса на Z-бозон и фотон в результатах экспериментов CMS и ATLAS. Физики проанализировали данные, накопленные за 2015-2018 года в ходе протон-протонных столкновений при энергии в системе центра масс в 13 тераэлектронвольт. Z-бозон искали через продукты уже его распада на мюонную или электрон-позитронную пару с массой больше 50 мегаэлектронвольт. Сам распад идентифицировали через пик инвариантной массы пары Z-бозона и фотона в окрестности массы бозона Хиггса — 125 гигаэлектронвольт. Для увеличения чувствительности анализа данных к изучаемому распаду все события-кандидаты разделяли на несколько категорий в зависимости от канала рождения бозона Хиггса, накладывали ограничения на кинематику продуктов распада, а также использовали машинное обучение. В результате физики увидели искомый распад со статистической точностью в 2,2σ для данных ATLAS и 2,6σ для данных CMS, что в сумме дало статистическую точность в 3,4σ. Также ученые оценили силу сигнала µ — отношение наблюдаемого в эксперименте произведения сечения и вероятности распада бозона Хиггса на Z-бозон и фотон к предсказываемому Стандартной моделью значению. Полученное значение µ = 2.2 ± 0.7 хоть и говорит о результате в два раза больше теоретических предсказаний, но из-за высокой погрешности согласуется с теорией со статистической точностью в 1,9σ. При этом доля изучаемого распада бозона Хиггса среди других его распадов оказалась равной (3.4 ± 1.1) × 10−3. Таким образом, для проверки предсказаний Стандартной модели в данном канале распада все еще требуется больше экспериментальных данных. Это далеко не первый редкий распад бозона Хиггса, который зарегистрировали на Большом адронном коллайдере. К примеру, ранее те же эксперименты CMS и ATLAS увидели канал распада на два мюона. А о том, как и почему для изучения таких редких распадов собираются строить электрон-позитронную хиггсовскую фабрику, можно почитать в нашем материале «100 ТэВ на перспективу».