Физики из Новой Зеландии и Франции разработали оптимальную стратегию поджаривания блинчика, при которой его поверхность получается наиболее плоской. Для этого ученые поставили и решили задачу оптимального управления, то есть составили уравнение движения теста и нашли траекторию, при которой однородность блина максимальна, а затрачиваемые усилия минимальны. Статья опубликована в Physical Review Fluids, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.
Идеальный блинчик имеет круглую форму, постоянную толщину и равномерно прожарен по всему объему. К сожалению, приготовить такой блинчик сложно, поскольку тесто быстро прожаривается и затвердевает, не успевая растечься по сковороде и самостоятельно выровнять толщину, поэтому блинчик приходится выравнивать насильно. В принципе, это можно сделать с помощью лопатки, которая быстро размазывает тесто по плоской сковороде. Такими лопатками пользуются повара, которым нужно приготовить блинчики быстро (например, повара сети «Теремок»). Если же специального оборудования для готовки блинов у вас нет, придется наклонять сковородку и размазывать тесто вращательными движениями.
Физики Эдуард Бужо (Edouard Boujo) и Мэтью Селлиер (Mathieu Sellier) сосредоточились на второй стратегии и нашли оптимальные движения, с помощью которых можно выровнять блин (crêpe). Для этого ученые переформулировали задачу выпекания блина как задачу оптимального управления. По словам физиков, до сих пор эту задачу никто толком не решал — как правило, при описании похожих процессов исследователи пренебрегают силой тяжести, тогда как при выпекании блинов она играет очень важную роль.
Сначала физики составили уравнение движение теста по поверхности сковороды, учитывая начальные условия (тесто выливается в центр сковороды) и граничные условия (положение стенок сковороды и температура ее дна). При этом исследователи учитывали изменение вязкости и плотности остывающего теста, силу тяжести и силу Кориолиса. Поэтому конечное уравнение движения сводилось к нелинейному параболическому дифференциальному уравнению. Параметры этого уравнения (например, теплопроводность теста) ученые определили на глаз, численно моделируя динамику теста и сравнивая ее с приготовлением настоящих блинов. По словам авторов статьи, этот этап исследований понравился их дочерям больше всего.
Затем исследователи попытались вслепую найти оптимальное движение, при котором толщина блина получается наиболее равномерной. Для этого ученые предположили, что вращательное и вертикальное движение сковороды представляют собой гармонические колебания с неизвестной амплитудой и периодом, и подобрали оптимальные значения параметров с помощью метода Монте-Карло. В результате физикам удалось на 40 процентов улучшить однородность блина по сравнению с неконтролируемым выпеканием. Тем не менее, исследователи догадывались, что рассмотренные движения не являются оптимальными.
Поэтому ученые рассмотрели наиболее общие траектории выпекания блинов, которые допускают составленные дифференциальные уравнения. Для этого ученые составили объектную функцию, которая описывает отклонение формы блина от идеальной плоскости (точнее, идеально плоского цилиндра) и усилие, которые необходимо затратить на изменение формы. Грубо говоря, усилие — это суммарное изменение угла и высоты центра масс сковороды, поэтому оно зависит от способа выпекания. Чтобы найти минимальное значение объектной функции на уравнениях движения, физики составили сопряженное уравнение и воспользовались методом градиентного спуска. Ученые подчеркивают, что этот способ не только более общий, но и гораздо менее затратный, чем поиск вслепую методом Монте-Карло. В конце концов, физикам удалось довести однородность блина до 180 процентов от однородности неконтролируемого выпекания.
Учитывая проделанную работу, исследователи предлагают следующую стратегию выпекания блина. Первым делом налейте тесто в центр сковороды, наклоните ее примерно на 10 градусов и подождите, пока тесто не достигнет бортика. Затем покрутите наклоненную сковороду, чтобы тесто сделало полный круг и равномерно заполнило всю доступную площадь. Наконец, продолжая круговое движение, уменьшите наклон сковороды до нуля и подождите, пока идеальный блинчик не будет готов.
По словам авторов статьи, их наработки пригодятся не только для жарки блинов, но и для других процессов, в которых нужно быстро выровнять жидкость перед затвердеванием. Например, в изготовлении фигурок из шоколада, производстве тонких эластичных оболочек, окрашивании и покрытии поверхностей.
Иногда ученым надоедают уравнения Навье — Стокса, бозе-конденсаты и гравитационные волны, и тогда они переключаются на более насущные проблемы — например, улучшение вкуса еды. Бужо и Селлиер далеко не первые физики, которые пошли по этому пути. Например, студенты Эссекского университета нашли оптимальный угол, под которым нужно нарезать жареную картошку — оказалось, что для самой вкусной корочки ломтики нужно нарезать под углом 30 градусов. Редакция N+1 проверила этот рецепт на практике и подтвердила, что он действительно работает. Физики из Технологического института Джорджии съездили в Тайвань, сняли на камеру работу поваров, обжаривающих рис в воке, и разработали математическую модель, которая описывает этот процесс. По словам ученых, с помощью этой модели можно построить робота, который готовит вкусный вок наравне с человеком. А если вы когда-то задумывались, как с помощью науки улучшить вкус шашлыка, вам следует прочитать наш материал «Химия на шампуре».
Дмитрий Трунин
Он расходится с последними теоретическими предсказаниями со статистической значимостью в 5σ
Физики представили новые результаты эксперимента Muon g-2 в Фермилабе по измерению аномального магнитного момента мюона. Согласно анализу данных двух новых сеансов измерений, физикам удалось больше чем в два раза уменьшить неопределенность измеренного значения. С учетом всех собранных Muon g-2 экспериментальных данных, новый результат противоречит последним предсказаниям Стандартной модели со статистической значимостью в 5,0σ. Согласно авторам статьи, препринт которой доступен на сайте эксперимента, статистическая значимость расхождения, вероятно, ослабнет, если включить в расчет предсказаний недавно опубликованные теоретические и экспериментальные результаты других коллабораций. Также о результатах эксперимента рассказывается на сайте ИЯФ имени Будкера, а запись научного семинара с докладом о последних результатах Muon g-2 доступна на YouTube.Значение магнитного момента мюона — одна из немногих напрямую измеряемых аномалий в современной физике, которая может указывать на существования физики за пределами Стандартной модели. Дело в том, что в это значение вносит вклад взаимодействие этого тяжелого лептона с существующими в нашей модели Вселенной виртуальными частицами. За счет большой массы мюона такой вклад различим на фоне хорошо предсказываемых электромагнитных поправок. Он же позволяет судить о существовании потенциально неоткрытых полей и частиц: расхождения измеренного значения магнитного момента и теоретических расчетов может указывать на неполноту теории. Однако сложность таких измерений в том, что относительная разница измеренного экспериментом и предсказанного теорией значений может проявляться только в шестом знаке после запятой. Для достижения такой точности измерений необходим большой массив экспериментальных данных, а также уверенность в том, что из их анализа были исключены любые систематические вклады и неопределенности в теории. Кроме того, сами предсказания Стандартной модели обладают погрешностью и зависят от параметров существующих в ней частиц и процессов. Два года назад мы уже рассказывали о природе аномального магнитного момента мюона и о том, как эксперимент Muon g-2 впервые увидел расхождение теории и эксперимента. Тогда в совокупности с данными двадцатилетней давности эксперимента-предшественника E821 в Брукхейвенской национальной лаборатории статистическая значимость расхождения составила 4,2 стандартных отклонения (или 4,2σ), чего лишь немного не хватило до общепринятого порога официального открытия в 5σ. Вчера участники коллаборации Muon g-2, в том числе физики из институтов Великобритании, Германии, Италии, Китая, России и США, представили результаты анализа данных двух новых сеансов измерений, которые состоялись в 2019 и 2020 годах. Полученное значение аномального магнитного момента совпало в пределах погрешности с результатами за первый сеанс измерений и эксперимента E821, а относительную точность измерения удалось уменьшить больше чем в два раза: с 0,46 до 0,20 миллионных долей. Как и в первом сеансе набора данных, магнитный момент мюона физики измеряли через разность циклотронной частоты и частоты спиновой прецессии поляризованных антимюонов (частица с противоположным по знаку мюону зарядом, но теми же свойствами) в накопительном кольце в сильном магнитном поле. Эта разность частот пропорциональна абсолютной величине аномального магнитного момента мюона и магнитному полю. Поэтому непрерывно измеряя магнитные поля внутри кольца с помощью ЯМР-проб, физики могли получить искомое значение магнитного момента. При этом сам антимюон в накопительном кольце достаточно быстро распадался на два нейтрино и позитрон, который за счет меньшей массы отклонялся в сторону внутреннего радиуса накопительного кольца, покрытого калориметрами. Искомую разность частот измеряли по колебаниям в количестве электронов, зарегистрированных с помощью этих детекторов. Столь сильно уменьшить погрешность измерений физикам удалось не только за счет увеличения количества набранных данных в 5 раз, но и благодаря оптимизации установки и процесса анализа данных. К примеру, ученые обернули кольцо в теплоизолирующий кожух и улучшили систему кондиционирования экспериментального холла, чтобы уменьшить колебания температуры, которые влияли на магнитное поле внутри установки. Большой вклад также внесли улучшение хранения пучка в кольце и оптимизация квадрупольных и дипольных магнитов в установке с обновленной техникой измерения их влияния на динамику пучка. В результате систематическая погрешность измерений составила всего 0,07 миллионных долей, что уже меньше цели эксперимента в 0,1 миллионных долей. К 2025 году физики собираются достигнуть цель и по статистической погрешности за счет обработки данных еще 3 сеансов набора данных, проведенных в 2021-2023 годах. Формально, с учетом всех собранных данных, измеренное экспериментом Muon g-2 значение аномального магнитного момента мюона уже сейчас противоречит предсказаниям Стандартной модели со статистической значимостью в 5σ, а с учетом данных эксперимента E821 — в 5,1σ. Однако участники коллаборации предостерегают от поспешных выводов: это сравнения с устаревшим расчетом теоретической группы эксперимента, опубликованным в 2020 году. По мнению ученых, недавно опубликованные данные эксперимента КМД-3 в Институте ядерной физики имени Будкера и теоретические расчеты коллаборации BMW должны повлиять на теоретические предсказания и потенциально сблизить их с экспериментально полученным значением. Еще одно прямое указание на Новую физику — переносчик слабого взаимодействия W-бозон. Год назад мы рассказывали о том, что измеренное коллаборацией CDF значение массы этой частицы разошлось с предсказаниями Стандартной модели на 7 стандартных отклонений.