Физики ожидают отсрочки в запуске модернизированного Большого адронного коллайдера — HL-LHC (High-Luminosity LHC). Третий сеанс работы в текущем виде может быть продлен на весь 2024 год, последующая за ним пауза — на полгода, так что запуск обновленной установки состоится лишь в 2028 году, а не в 2026, как было заложено в изначальных планах. Об этом говорится в презентации участника одного из экспериментов, официальное сообщение от ЦЕРН должно появиться позже.
Большой адронный коллайдер (БАК, Large Hadron Collider, LHC) — это самый мощный ускоритель элементарных частиц. Он создан для изучения столкновений пучков протонов на больших энергиях, при взаимодействии которых рождается большое количество новых частиц. Основным достижением этой установки стало открытие бозона Хиггса. Также ожидалось, что БАК сможет найти новые частицы за рамками предсказаний Стандартной модели, но эти надежды не оправдались.
План функционирования БАК предполагает три рабочих сеанса длительностью по несколько лет, в течение которых собираются научные данные. Между ними установка выключена, а ее элементы заменяются на более новые, что позволяет увеличить энергию столкновений, светимость и другие параметры. В данный момент идет второй период длительной остановки на переоборудование. Третий рабочий сеанс начнется в 2021 году. По изначальным планам он должен был продлиться до конца 2023 года, затем очередная остановка на 2,5 года, а с конца 2026 — работа уже в режиме высокой светимости.
Однако эти планы сдвигаются, говорится в слайдах Густава Бройманс (Gustaaf Brooijmans) из Колумбийского университета. Третий сеанс будет продлен на год до конца 2024, а следующая за ним остановка на полгода — до второй половины 2027. В таком случае полноценная работа обновленного коллайдера начнется лишь в 2028 году с опозданием примерно на полтора года относительно начальных планов.
Улучшение до HL-LHC должно увеличить один из основных параметров установки, светимость, примерно в десять раз. Эта величина характеризует интенсивность столкновений частиц и фактически определяет темп набора данных. Для этого потребуется внести изменения на 1,2 километра основного кольца из 27. В частности, там установят новые сверхпроводящие магниты, генерирующие поле в 11–12 тесла, что уменьшит диаметр пучка около двух основных детекторов — ATLAS и CMS. Стоимость работ оценивается в 1,3 миллиарда евро.
Physics World отмечает, что задержка связана, в первую очередь, с недостатком финансирования в размере около 100 миллионов фунтов стерлингов. Издание пишет, что эти средства должны были поступить от одной из сотрудничающих с ЦЕРН стран, не входящих в организацию.
Ранее сообщалось, что ЦЕРН откажется от продуктов компании Microsoft и начнет систематический переход на открытое программное обеспечение, а Большой адронный коллайдер обогреет дома излишками тепла. Также мы подробно писали про заключение нового соглашения о научно-техническом сотрудничестве между Россией и ЦЕРН.
Тимур Кешелава
Роль магнитного поля сыграло туннелирование в оптической решетке
Физики впервые экспериментально сгенерировали дробные квантовые состояния Холла в двумерной системе ультрахолодных атомов. Как сообщается в Nature, в созданных состояниях удалось пронаблюдать основные свойства дробных холловских: подавление двухчастичного взаимодействия, сильные (анти)корреляции плотности и дробную величину аналога холловской проводимости. Дробный квантовый эффект Холла возникает в двумерном электронном газе в сильных магнитных полях. Одноименно заряженные электроны отталкиваются друг от друга, однако не могут разлетаться прямолинейно из-за сильного магнитного поля, которое резко закручивает импульс частиц и порождает сложное коллективное движение в системе: поведение отдельных частиц не независимо, а наоборот сильно скоррелировано. В таких ситуациях вместо рассмотрения каждого электрона в отдельности изучают коллективную волновую функцию системы, выделяя основное состояние системы (низшее по энергии) и возбужденные состояния (с энергией выше основного) — квазичастицы. При этом эффективная масса или заряд последних не обязаны совпадать с характеристиками исходных частиц. Так, еще в восьмидесятых годах прошлого века было установлено, что в дробном квантовом эффекте Холла заряд собравшихся из коллективных электронных возбуждений квазичастиц оказывается дробным по отношению к заряду самих электронов. Этим можно объяснить наблюдаемую дробную холловскую проводимость: в обычной ситуации эта величина в единицах отношения квадрата заряда электрона к постоянной планка (обратный квант электрического сопротивления) равна целому числу, а в дробном эффекте Холла принимает нецелые значения. Более того, даже статистика таких квазичастиц может быть промежуточной по отношению к стандартной классификации элементарных частиц на бозоны и фермионы: состояния не обязаны быть строго симметричными или антисимметричными по отношению к перестановкам. Такие экзотические свойства делают дробные холловские состояния перспективным инструментом для квантовых вычислений. При этом вместо того чтобы создавать и контролировать сильные магнитные поля во многоэлектронных системах, физики стремятся создать аналогичные по свойствам, но легко контролируемые квантовые системы — например, из ультрахолодных атомов в оптической решетке. Тем не менее, до недавнего времени об экспериментальной реализации дробных холловских состояний в системах ультрахолодных атомов не сообщалось. Теперь физики из Австрии, Бельгии, Германии, США и Франции под руководством Маркуса Грейнера (Markus Greiner) из Гарвардского университета смогли создать дробные холловские состояния в системе двух ультрахолодных атомов рубидия-87. Для этого исследователи размещали атомы в квадратной оптической решетке (на пересечении двух лазерных лучей) размером в четыре ячейки с каждой стороны, и на протяжении эксперимента контролировали их положение (с разрешением в одну ячейку) с помощью флуоресцентных изображений. Первоначально атомы находились соседних краевых ячейках решетки. Затем авторы, контролируя параметры ячейки, по очереди адиабатически медленно создавали туннелирование по каждой из осей решетки, симулируя тем самым поведение заряженных частиц в сильном магнитном поле. В результате пара атомов рубидия переходила в коллективное состояние, которое физики фиксировали и после анализировали сходство с состояниями дробного холловского типа по свойствам получившегося пространственного распределения плотности и зависимости этих свойств от величины эффективного магнитного поля. В результате авторы обнаружили в итоговых состояниях все ключевые характеристики дробных холловских состояний. Во-первых, удалось зарегистрировать подавление двухчастичного взаимодействия: начиная с критических значений магнитного потока (при переходе к коллективному состоянию) в несколько раз (по сравнению с обычным состоянием) снижалась вероятность наблюдать оба атома в одной и той же ячейке решетки. Во-вторых, эффективная холловская проводимость приняла дробное значение — этот параметр исследователи оценивали через производную средней плотности атомов в центральных четырех ячейках по величине эффективного магнитного потока. Наконец, в-третьих, при надкритической величине эффективного поля кратно возрастали значения (анти)корреляции плотности по всей оптической решетке, что свидетельствует о переходе к зависимому, коллективному поведению системы. При этом сходство оказалось не только качественным, но и количественным: измеренные величины совпали с теоретическим прогнозом для дробного холловского состояния в пределах погрешности, что позволяет заявить о надежной регистрации этого состояния в системе ультрахолодных атомов. Кроме того, чтобы оценить качество адиабатической подготовки коллективного состояния из исходного, в части опытов физики вместо фиксации результата проделывали подготовку в обратной последовательности, от конечного состояния к начальному. Вероятность обнаружить в этом «новым начальном» состоянии исходное начальное исследователи использовали как количественную оценку адиабатичности своих манипуляций: эта величина составила около 43 процентов. По словам авторов, экспериментальный результат является первым шагом в освоении контролируемых манипуляций с сильно скоррелированными состояниями ультрахолодных атомов и в будущем может оказаться практически полезным для квантовых технологий. Ранее мы рассказывали о том, как орбитальное движение атомов повлияло на формирование ультрахолодных димеров в оптических решетках и о том, как свет помог собрать ультрахолодную молекулу из двух атомов.