Физики из Германии впервые построили микрокапсулу из двух жидкостей, которая не разрушается во время движения. Для этого ученые использовали нематический жидкий кристалл как материал оболочки: в ней сила упругости уравновешивает силу лобового сопротивления, возникающую из-за циркуляции жидкости внутри капли, и капля остается стабильной. Более того, капля самопроизвольно ускоряется, выбрасывая материал оболочки в окружающую среду. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics.
Ученые давно разрабатывают управляемые микроскопические устройства. Помимо очевидных применений в медицинских целях — например, для направленной доставки лекарств в органы — такие устройства также необходимы для создания микросенсоров и микрореакторов. Один из самых распространенных (и самых простых) примеров такого устройства — это микрокапсула, собранная из двух несмешивающихся жидкостей. Фактически такая капсула представляет собой каплю-в-капле, ядро, окруженное сферически симметричной оболочкой. За последние десять лет с помощью микрокапсул ученые научились хранить лекарства и еду, проводить контролируемые химические реакции, собирать искусственные клеточные мембраны и искать определенные виды бактерий.
К сожалению, жидкие микрокапсулы очень легко разрушаются: стоит сместить ядро относительно центра капли, и ее оболочка начинает истончаться. В конце концов оболочка разрывается, а содержимое капли вытекает. Из-за этого жидкую микрокапсулу практически невозможно сдвинуть с места. Получается, что такие устройства не подходят для важнейшего практического применения — направленной доставки лекарств, — хотя и имеют множество других достоинств.
Группа физиков под руководством Бабака Хокмабада (Babak Hokmabad) исправила этот существенный недостаток. Для этого ученые заменили жидкость, образующую оболочку капли, нематическим жидким кристаллом. Оказалось, что благодаря нарушению симметрии такая оболочка создает анизотропные химические и поля и неоднородные гидродинамические силы, которые удерживают ее в равновесии. Более того, физики показали, что с помощью этих сил можно управлять движением капли, заставляя ее самопроизвольно ускоряться.
В качестве материалов для капсулы ученые выбрали воду и нематический жидкий кристалл 5CB (4-Циано-4’-пентилбифенил). Для создания капель физики пропускали нематик через узкую трубочку с двумя подводящими трубками для воды: с помощью первой трубки ученые впрыскивали каплю в нематик, а с помощью второй «отрезали» очередную каплю. Характерный размер капли составлял несколько десятков микрометров. Затем исследователи помещали каплю в раствор поверхностно-активного вещества (anionic surfactant TTAB). Перемещения капель в таком растворе ученые отслеживали в микроскоп и записывали на видео.
В результате оказалось, что капли сохраняют стабильность в течение долгого времени даже в тех случаях, когда внутреннее ядро сильно смещено относительно центра капли. При температуре около 24 градусов капли в среднем «жили» около получаса. Более того, на протяжении этого времени капли самопроизвольно ускорялись, выбрасывая часть вещества в окружающую среду. При этом оболочка капли постепенно истончалась, хотя и не разрушалась полностью, а движение капли замедлялось. Распадалась капля только тогда, когда отношение радиуса внутреннего ядра к толщине оболочки достигало двадцати. Капли с изотропной оболочкой в тех же условиях распадались в сто раз быстрее, не успевая добраться до состояния тонкой оболочки. Например, при температуре порядка 35 градусов, при которой 5CB теряет дальний порядок и перестает быть жидким кристаллом, капли в среднем жили около минуты.
Чтобы объяснить, почему капли так долго остаются стабильными, физики численно смоделировали поведение ядра внутри капли. С одной стороны, внутри капли постоянно циркулирует жидкость — следовательно, на ядро действует сила лобового сопротивления, которая пытается вытолкнуть его из капли. Эту силу ученые нашли, численно моделируя циркуляцию жидкости. С другой стороны, сила упругости стремится вернуть его в центр капли. Чтобы найти эту силу, ученые рассчитали энергию упругих деформаций капли и продифференцировали ее по радиусу. В результате оказалось, что около границы оболочки обе силы по порядку равны 100 пиконьютонам и примерно уравновешивают друг друга.
Чтобы проверить это утверждение, ученые также рассмотрели поведение капель с несколькими водяными ядрами. И численные расчеты, и эксперимент показали, что такие капли также остаются стабильными на протяжение долгого времени. Тем не менее, дополнительное ядро сильно сказывается на том, как капля будет выбрасывать материал оболочки в окружающую среду. Поэтому ученые считают, что с помощью таких капель вполне можно направленно доставлять лекарства или другие вещества. Более того, их можно заставить выпустить вещество в заданной точке, нагрев их и превратив жидкий кристалл в обычную изотропную жидкость.
В настоящее время микророботы редко используются для направленной доставки лекарств, однако ученые постепенно совершенствуют эту технологию. Например, в ноябре 2016 года китайские химики разработали микрочастицы, которые самостоятельно перемещаются за счет химического топлива и ориентируются по свету. В 2017 инженеры из США и Нидерландов построили микророботов, которые перемещаются и захватывают объекты в ответ на изменение температуры. Чаще же всего ученые управляют миниатюрными устройствами с помощью внешнего магнитного поля, заставляя роботов перетаскивать объекты и доставлять их в нужные органы.
Дмитрий Трунин
Редкий процесс рассмотрели в совместном массиве данных экспериментов CMS и ATLAS
На Большом адронном коллайдере впервые нашли убедительные следы редкого распада бозона Хиггса на Z-бозон и фотон. Его увидели со статистической точностью в 3,4σ в объединенных данных экспериментов CMS и ATLAS по протон-протонным столкновениям за 2015-2018 года. Обнаруженный сигнал совпал с предсказаниями Стандартной модели, но в будущем подробное изучение распада поможет в поиске различий между теорией и экспериментом. О своих результатах физики рассказали на конференции LHCP-2023, подробнее об открытии сообщается в сопровождающей записке. Бозон Хиггса — знаменитая элементарная частица, объясняющая существование инертной массы у ряда частиц Стандартной модели. Существование этой частицы теоретически предсказал Питер Хиггс еще в 1964 году, а в 2012 году ее обнаружили эксперименты CMS и ATLAS на Большом адронном коллайдере. Бозон Хиггса стал последней экспериментально открытой частицей Стандартной модели, но на этом его исследование не закончилось. Те же самые ATLAS и CMS продолжили изучать свойства бозона, в числе которых — каналы его распада и сила его взаимодействия с другими частицами. Почти все предсказываемые Стандартной моделью свойства бозона Хиггса удалось подтвердить. Но некоторые из распадов этой частицы чрезвычайно редкие, поэтому чтобы увидеть и изучить их необходимо накопить особенно большой массив экспериментальных данных. Один из таких распадов — канал в один переносчик слабого взаимодействия Z-бозон и один фотон. Согласно теории, для бозона Хиггса с массой в 125 гигаэлектронвольт доля этого распада среди всех остальных — примерно 0,15 процента. Именно в такие редкие распады физики изучают в поисках расхождения экспериментальных данной со Стандартной моделью, у которой не получается объяснить ряд проблем в современной физике. Отклонение вероятности такого распада от стандартных теоретических предсказаний могло послужить аргументом в пользу моделей, в которых бозон Хиггса на самом деле нейтральный скаляр или сложная частица. Это же может указать на правдивость теорий с дополнительными еще не открытыми бесцветными заряженными частицами, которые взаимодействуют с бозоном Хиггса через петлевые поправки. Теперь же ученым впервые удалось рассмотреть распад бозона Хиггса на Z-бозон и фотон в результатах экспериментов CMS и ATLAS. Физики проанализировали данные, накопленные за 2015-2018 года в ходе протон-протонных столкновений при энергии в системе центра масс в 13 тераэлектронвольт. Z-бозон искали через продукты уже его распада на мюонную или электрон-позитронную пару с массой больше 50 мегаэлектронвольт. Сам распад идентифицировали через пик инвариантной массы пары Z-бозона и фотона в окрестности массы бозона Хиггса — 125 гигаэлектронвольт. Для увеличения чувствительности анализа данных к изучаемому распаду все события-кандидаты разделяли на несколько категорий в зависимости от канала рождения бозона Хиггса, накладывали ограничения на кинематику продуктов распада, а также использовали машинное обучение. В результате физики увидели искомый распад со статистической точностью в 2,2σ для данных ATLAS и 2,6σ для данных CMS, что в сумме дало статистическую точность в 3,4σ. Также ученые оценили силу сигнала µ — отношение наблюдаемого в эксперименте произведения сечения и вероятности распада бозона Хиггса на Z-бозон и фотон к предсказываемому Стандартной моделью значению. Полученное значение µ = 2.2 ± 0.7 хоть и говорит о результате в два раза больше теоретических предсказаний, но из-за высокой погрешности согласуется с теорией со статистической точностью в 1,9σ. При этом доля изучаемого распада бозона Хиггса среди других его распадов оказалась равной (3.4 ± 1.1) × 10−3. Таким образом, для проверки предсказаний Стандартной модели в данном канале распада все еще требуется больше экспериментальных данных. Это далеко не первый редкий распад бозона Хиггса, который зарегистрировали на Большом адронном коллайдере. К примеру, ранее те же эксперименты CMS и ATLAS увидели канал распада на два мюона. А о том, как и почему для изучения таких редких распадов собираются строить электрон-позитронную хиггсовскую фабрику, можно почитать в нашем материале «100 ТэВ на перспективу».