Ученые из Университета Северной Каролины и Университета Дьюка создали микроскопических роботов для различных биомедицинских задач. Роботы представляют собой массив из полимерных кубов с нанесенным на одну сторону металлом. За счет этого их движением можно управлять с помощью магнитного поля, заставляя их группироваться в более сложные структуры, которые могут захватывать объекты и двигаться в определенном направлении. Ученые считают, что в будущем такие роботы позволят исследователям и врачам изучать отдельные клетки пациентов, к примеру клетки опухолей. Исследование опубликовано в журнале Science Advances.
Ученые давно занимаются разработкой микроскопических роботов для различных медицинских задач. К примеру, такие роботы могут доставлять лекарства в конкретные части органов, или наоборот делать биопсию, забирая для анализа клетки. Пока существуют лишь очень ограниченные прототипы таких устройств. Дело в том, что у такого подхода есть множество не решенных проблем, таких как управление, питание электроэнергией и другие.
Американские исследователи представили управляемых внешним магнитным полем, и способных не только двигаться в определенном направлении, но и манипулировать отдельными клетками. Основу таких роботов составляют полимерные кубы размером около десяти микрометров с нанесенным на одну грань слоем кобальта толщиной около ста нанометров. За счет внешнего магнитного поля распределенные случайным образом полимерные блоки собираются в цепочки таким образом, что металлические стороны выстраиваются в полосу. Таким образом, из-за разной изначальной ориентации блоков часть из них может оказаться по одну сторону полосы, а часть по другую. Ученые назвали два этих положения A и B, и таким образом смогли описывать с помощью последовательности типа AABABBA форму группы микророботов.
Исследователи продемонстрировали несколько различных действий с помощью роботов. К примеру, они смогли подвести такого микроробота к отдельной клетке дрожжей, захватить ее, переместить, и высвободить. Как перемещение, так и изменение формы робота происходит с помощью внешнего магнитного поля и зависит от его ориентации, величины, а также от того, в каком порядке расположены блоки робота.
Недавно китайские ученые также создали роботов для перемещений внутри живых организмов. Они так же управлялись с помощью магнитного поля, но двигались несколько иначе: они состояли из «тела» и «рук», которые гребли подобно тому, как плавают люди. А в начале года японские ученые сделали управляемого микроробота, состоящего полностью из биомолекул.
Григорий Копиев
Он отбил более ста мячей подряд
Американские инженеры разработали систему управления HITTER, которая позволяет свободно двигающемуся человекоподобному роботу играть в настольный теннис. Система состоит из двух элементов: высокоуровневого планировщика, предсказывающего траекторию мяча, и низкоуровневого нейросетевого контроллера, который управляет движениями робота. Такой подход позволяет роботу реагировать на мяч, летящий со скоростью более пяти метров в секунду, и при этом двигаться вдоль стола, удерживая равновесие. В тестах человекоподобный робот Unitree G1 под управлением HITTER показал уровень игры сравнимый с любительским. Робот смог провести несколько игр против людей и другого такого же робота. В одной из игр он успешно выполнил 106 последовательных ударов. Препринт статьи доступен на сайте arXiv.org.