Ученые из Университета Северной Каролины и Университета Дьюка создали микроскопических роботов для различных биомедицинских задач. Роботы представляют собой массив из полимерных кубов с нанесенным на одну сторону металлом. За счет этого их движением можно управлять с помощью магнитного поля, заставляя их группироваться в более сложные структуры, которые могут захватывать объекты и двигаться в определенном направлении. Ученые считают, что в будущем такие роботы позволят исследователям и врачам изучать отдельные клетки пациентов, к примеру клетки опухолей. Исследование опубликовано в журнале Science Advances.
Ученые давно занимаются разработкой микроскопических роботов для различных медицинских задач. К примеру, такие роботы могут доставлять лекарства в конкретные части органов, или наоборот делать биопсию, забирая для анализа клетки. Пока существуют лишь очень ограниченные прототипы таких устройств. Дело в том, что у такого подхода есть множество не решенных проблем, таких как управление, питание электроэнергией и другие.
Американские исследователи представили управляемых внешним магнитным полем, и способных не только двигаться в определенном направлении, но и манипулировать отдельными клетками. Основу таких роботов составляют полимерные кубы размером около десяти микрометров с нанесенным на одну грань слоем кобальта толщиной около ста нанометров. За счет внешнего магнитного поля распределенные случайным образом полимерные блоки собираются в цепочки таким образом, что металлические стороны выстраиваются в полосу. Таким образом, из-за разной изначальной ориентации блоков часть из них может оказаться по одну сторону полосы, а часть по другую. Ученые назвали два этих положения A и B, и таким образом смогли описывать с помощью последовательности типа AABABBA форму группы микророботов.
Исследователи продемонстрировали несколько различных действий с помощью роботов. К примеру, они смогли подвести такого микроробота к отдельной клетке дрожжей, захватить ее, переместить, и высвободить. Как перемещение, так и изменение формы робота происходит с помощью внешнего магнитного поля и зависит от его ориентации, величины, а также от того, в каком порядке расположены блоки робота.
Недавно китайские ученые также создали роботов для перемещений внутри живых организмов. Они так же управлялись с помощью магнитного поля, но двигались несколько иначе: они состояли из «тела» и «рук», которые гребли подобно тому, как плавают люди. А в начале года японские ученые сделали управляемого микроробота, состоящего полностью из биомолекул.
Григорий Копиев
Он позволяет подключать до шести роборук одновременно
Инженеры и дизайнеры из Японии разработали прототип модульной системы дополнительных носимых роборук JIZAI ARMS. Система состоит из базового блока, который надевается на спину как рюкзак, а уже к нему можно присоединять до шести роботизированных конечностей. Доклад с описанием разработки представлен в рамках конференции CHI ’23. Инженеры достаточно давно экспериментируют с носимыми дополнительными конечностями. Как правило, это роборуки, которые крепятся к торсу или спине человека и управляются либо им самим, либо оператором. Однако существующие прототипы чаще всего выполнены в виде одной руки или дополнительной пары — например, именно так выглядели роборуки, представленные в 2019 году группой инженеров под руководством Масахико Инами (Masahiko Inami) из Токийского университета. Теперь японские инженеры и дизайнеры под руководством Нахоко Ямамуры (Nahoko Yamamura) из Токийского университета при участии Масахико Инами разработали носимую систему JIZAI ARMS, которая поддерживает сразу шесть роборук. Система имеет модульную конструкцию, в основе которой находится базовый блок. Он надевается на спину человека как рюкзак и удерживается в плотном контакте с телом за счет нескольких ремней. Блок имеет шесть портов для установки быстросъемных робоконечностей. Порты попарно расположены в разных плоскостях чтобы установленные руки не мешали движению друг друга. Каждый порт имеет электрический разъем в центре и энкодер для определения угла, под которым прикреплена роботизированная рука. Масса базового блока составляет 4,1 килограмм. А общая масса системы вместе с четырьмя подсоединенными к терминалам руками достигает 14 килограмм. Длина роборук подбиралась такой, чтобы при вытягивании их вперед перед пользователем быть приблизительно равной длине его рук. Кисти роборук съемные и при необходимости их можно заменить захватами другого типа. Также дизайнеры постарались придать робоконечностям анатомическое сходство с человеческими руками. Система может управляться через приложение на персональном компьютере, а также с помощью контроллера, выполненного в виде уменьшенной вдвое копии базового модуля и присоединенных к нему роборук. Если пользователь или сторонний оператор изменяет положение рук на контроллере, то это приводит к аналогичным движениям робоконечностей на полноразмерном прототипе. Авторы отмечают сложность управления несколькими руками одновременно, для этого им приходилось задействовать сразу несколько операторов. В дальнейшем исследователи планируют изучить впечатления и ощущения людей от длительного ношения и использования модулей с дополнительными конечностями. https://www.youtube.com/watch?v=WZm7xOfUZ2Y На сегодняшний день отсутствие эффективных систем управления — главное препятствие на пути внедрения систем дополнительных носимых рук. Однако, как продемонстрировали инженеры из Японии, в будущем, возможно, удастся научить людей управлять дополнительными конечностями с помощью нейроинтерфейсов.