Британский инженер разработал робота, имеющего конструкцию обратного маятника и способного передвигаться в любом направлении. В нем установлены две пары колес Илона, позволяющие двигаться в любом направлении без поворота колес. Разработка была представлена на конференции ICRA 2019.
Представленный робот по сути представляет частный случай обратного маятника. В такой конструкции, в отличие от обычного маятника, точка опоры находится ниже центра масс, из-за чего, будучи в вертикальном положении, он всегда нестабилен. Для поддержания обратного маятника в вертикальном положении точку его опоры необходимо постоянно смещать. Этот принцип часто применяется на практике в различных устройствах, к примеру, Segway и других гироскутерах. Кроме того, похожие принципы управления используются в ракетах, в которых двигатели, создающие реактивную тягу, находятся ниже центра масс и тем самым вызывают нестабильность.
Инженер Мэттью Уотсон (Matthew Watson) из Шеффилдского университета разработал робота, который, в отличие от гироскутеров, может двигаться в любую сторону без поворота корпуса. Такие способности робот имеет благодаря применению колес Илона. Они были разработаны в 1970-х годах инженером Бенгтом Илоном и наиболее часто применяются в вилочных погрузчиках на складах. Каждое колесо состоит из круглого основания и закрепленных под углом роликов. Меняя крутящий момент на разных колесах машина может сдвигаться в нужном направлении, не поворачивая корпус.
В своем роботе Уотсон использовал четыре таких колеса, но они расположены вдоль одной оси в виде двух пар. Статья, представленная на ICRA 2019, пока не опубликована, но некоторые выводы об устройстве робота можно сделать исходя из другой статьи, описывающей предыдущую версию разработки. В том роботе инженеры использовали для управления положением робота четыре двигателя с датчиками угла поворота, а также по три гироскопа и акселерометра.
Создав модель, связывающую параметры вращения колес и параметры движения всей конструкции, инженеры создали алгоритм управления роботом, позволяющий ему передвигаться в любом направлении. На ролике можно видеть, что робот способен передвигаться даже по сложным траекториям, к примеру, совмещая поступательное движение с вращательным.
Ранее конструкцию обратного маятника применяли другие разработчики роботов и дронов. Например, недавно одноногого робота Salto-1P сделали автономным, научив самостоятельно отслеживать параметры своего движения. Он передвигается, постоянно прыгая на одной ноге, приводимой в движение электромотором, а также управляя вращением вокруг разных осей с помощью маховика и двух винтов. А в прошлом году швейцарские инженеры научили квадрокоптер выполнять круговой оборот со стоящим вертикально шестом, не закрепленным на корпусе.
Григорий Копиев
Его скорость по вертикальным поверхностям достигает шести сантиметров в секунду
Инженеры разработали прототип гибридного орнитоптера, который может садиться и ездить по вертикальным поверхностям. Помимо четырех машущих крыльев он имеет два воздушных винта и гусеничный привод с клейкими лентами, который используется для движения по стенам. Статья с описанием разработки опубликована в журнале Research. При поддержке Angie — первого российского веб-сервера Свобода передвижения, доступная летающим насекомым, давно вдохновляет инженеров, разрабатывающих беспилотники. К примеру способность мух быстро переходить от маневренного полета к передвижению по вертикальной поверхности пытались реализовать создатели дрона SCAMP. Они оснастили квадрокоптер двумя ножками с металлическими коготками, с помощью которых дрон может передвигаться по стенам, цепляясь за мелкие неровности. В случае срыва, дрон быстро включает роторы, чтобы предотвратить крушение. Существуют и другие прототипы мультироторных дронов, со способностью садиться на стены, однако орнитоптеры (даже с ногами) до сих пор на стену садиться не умели. Инженеры под руководством Цзи Айхуна (Aihong Ji) из Нанкинского университета аэронавтики и космонавтики разработали гибридный орнитоптер с небольшими вспомогательными воздушными винтами. Он может садиться на вертикальные поверхности, взлетать с них, а также передвигаться по ним, используя небольшой гусеничный привод с клейким покрытием и прижимную силу пропеллеров. Основную подъемную силу орнитоптера массой 135 грамм создают четыре машущих крыла, расположенные по X-образной схеме. Левая и правая пары крыльев приводятся в движение индивидуальными электромоторами. Изменяя независимо частоту их взмахов можно управлять беспилотником по оси крена. При полете на обычной скорости частота взмахов составляет 15 Герц, а максимально допустимая — 20 Герц. На носу и в хвосте орнитоптера расположены воздушные винты небольшого диаметра. В полете они генерируют дополнительную тягу, а также служат для управления по оси тангажа, отклоняя беспилотник вперед или назад. Ротор, установленный в хвосте, дополнительно имеет механизм управления вектором тяги — он может отклоняться с помощью сервопривода влево или вправо. Благодаря этому происходит управление орнитоптером по оси рыскания. В передней части аппарата установлен гусеничный привод, который используются для движения по вертикальным плоскостям. Ленты привода покрыты полидиметилсилоксаном, адгезивные свойства которого позволяют орнитоптеру удерживать сцепление с вертикальной поверхностью. При посадке на вертикальную поверхность орнитоптер сначала касается ее лентами привода, после чего изменяет уровни тяги хвостового и переднего роторов и переворачивается, прижав хвост к стене. Далее тяга роторов используется для создания прижимной силы. Так повышается сцепление и исключается возможное опрокидывание при движении. Взлет происходит в обратном порядке. Полный непрерывный переход воздух—стена—воздух происходит за 6,1 секунды. Прижимаясь к поверхности, гибрид может перемещаться по ней с помощью гусениц со скоростью до шести сантиметров в секунду. В экспериментах орнитоптер смог успешно сесть и прокатиться по стеклу, деревянной двери, мрамору, древесной коре, эластичной ткани и окрашенному листу металла. В воздухе на одной зарядке прототип может находиться около четырех минут и пролетать за это время около одного километра с максимальной скоростью 6,8 метров в секунду. https://www.youtube.com/watch?v=5st-wNxukTg В будущем разработчики планируют повысить сцепление гусеничного узла за счет добавки микрошипов в материал гусеничных лент. Также орнитоптеру добавят автономности — для этого его осностят сенсорами для самостоятельной навигации. Ранее другая команда инженеров, вдохновившись устройством крыльев жука-носорога, создала механическое крыло, которое может на короткое время складываться при ударе о препятствие, а затем вновь распрямляться за счет подвижного узла в верхней кромке. Миниатюрный орнитоптер с такими крыльями может продолжать стабильный полет, даже если его крылья ударяются об окружающие предметы.